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5 Duality in conic programming

Motivating example in linear programming Consider the following simple linear program:

minimise 2x+ y
subject to x+ y + 1 ≥ 0

x+ 1 ≥ 0
y + 1 ≥ 0
−x+ 1 ≥ 0
−y + 1 ≥ 0

(1)

Let us call p∗ the optimal value of (1).

• Finding an upper bound on p∗ is “simple”: if (x, y) is any feasible point then we know, by
definition, that p∗ ≤ 2x + y. For example it is easy to verify that the point (x, y) = (0, 0) is
feasible. This tells us that p∗ ≤ 0. If we take (x, y) = (−1, 0), which is also feasible, we get
that p∗ ≤ −2.

• Consider now the more difficult question of finding a lower bound on p∗. How can we do this?
One strategy is to take linear combinations of the constraints with nonnegative coefficients.
For example if we multiply the second constraint x+1 by 2 and add it to the third constraint,
we get that any feasible point of (1) must satisfy 2(x+ 1) + y + 1 ≥ 0, i.e., 2x+ y ≥ −3. In
other words this tells us that p∗ ≥ −3. Is this the best possible lower bound we can get on
p∗ using this strategy? Let’s try another combination: if we add the first constraint to the
second constraint we get that any feasible (x, y) must satisfy (x + y + 1) + (x + 1) ≥ 0, i.e.,
2x+ y ≥ −2. As a consequence we get p∗ ≥ −2.

To summarize: we have shown on the one hand that p∗ ≤ −2 by exhibiting a feasible point of (1)
whose objective value is −2. On the other hand, by taking appropriate linear combinations with
nonnegative coefficients of the constraints we have shown that p∗ ≥ −2. We have thus shown that
p∗ = −2.

Motivating example in semidefinite programming Consider the now the simple semidefinite
programming:

minimise 2x+ y

subject to

[
1− x y
y 1 + x

]
� 0.

(2)

Let us call p∗ the optimal value of (1). Consider again the problem of finding a lower bound on p∗.
How can we generalise the idea of “taking linear combinations with nonnegative coefficients of the
constraints” that we saw in the previous example? Here is how: assume

[
a b
b c

]
is a 2× 2 symmetric

matrix that is positive semidefinite. Since the trace inner product of two positive semidefinite
matrices is nonnegative, it follows that any feasible point (x, y) of (2) must satisfy the linear
inequality:

Tr

([
a b
b c

] [
1− x y
y 1 + x

])
≥ 0. (3)
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Doing the calculation, this gives a(1 − x) + 2by + c(1 + x) ≥ 0 i.e., (c − a)x + 2by ≥ −a − c.
Since our objective function in (2) is 2x + y, we want a, b, c to satisfy c − a = 2 and b = 1/2.
Any such choice of (a, b, c) will then tell us that p∗ ≥ −a − c. Consider now the specific choice
a = α − 1, c = α + 1, b = 1/2 where α =

√
5/2. The matrix

[
a b
b c

]
can be easily verified to be

positive semidefinite: its trace is 2α ≥ 0 and its determinant is α2− 1− 1/4 ≥ 0. Using this choice
of matrix we get that the optimal value p∗ satisfies p∗ ≥ −a− c = −

√
5.

It is not difficult to verify that p∗ is indeed equal to −
√

5: take (x, y) = (−2,−1)/
√

5 which is
feasible for (2) and note that for this point the objective function evaluates to −

√
5.

We saw in both examples how one can get lower bounds on p∗ by taking certain “combinations”
of the constraints. We will now see how to generalise this idea to general conic optimisation
problems.

Duality for general conic programs Let K ⊆ Rn be a proper cone and consider the conic
program

minimise 〈c, x〉
subject to A(x) = b

x ∈ K
(4)

Here A : Rn → Rm is a linear map and b ∈ Rm. Let us call p∗ the optimal value of (4). We now
describe a way to find a lower bound on p∗ in the same way we did for the examples considered
above. Assume we can find y ∈ Rm and z ∈ Rn that satisfy the following:

c = z +A∗(y) and z ∈ K∗ (5)

where A∗ denotes the adjoint of A (in the matrix representation of A in the canonical basis then
A∗ is simply the transpose of A). It is now an easy calculation to show that if (y, z) satisfy (5)
then we have the following lower bound on p∗: p∗ ≥ 〈b, y〉. Indeed if x is any feasible point of (4),
then:

〈c, x〉 = 〈z +A∗(y), x〉 (a)= 〈z, x〉+ 〈y,A(x)〉
(b)
= 〈z, x〉+ 〈y, b〉
(c)

≥ 〈y, b〉

(6)

where in (a) we used the definition of adjoint, namely that 〈A∗(u), v〉 = 〈u,A(v)〉; in (b) we used
the fact that A(x) = b; and in (c) we used the fact that z ∈ K∗ and x ∈ K to conclude that
〈z, x〉 ≥ 0.

A natural thing to do is to look at the best lower bound on p∗ one can obtain in this way. This
amounts to the following maximisation problem:

maximise
y∈Rm,z∈Rn

〈b, y〉

subject to c = z +A∗(y)
z ∈ K∗.

(7)

The optimisation problem (7) is called the dual of (4). Observe that (7) is a conic program over
K∗. In the two simple examples we considered in the beginning we saw that the optimal value of
the dual was equal to the optimal value of our (primal) problem. This phenomenon is known as
strong duality. The next theorem gives (fairly mild) conditions under which strong duality holds
for conic programs:
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Theorem 5.1 (Duality for conic programs). Consider the conic program (4) and let p∗ be its
optimal value. Also let d∗ be the optimal value of the dual program (7). Then the following holds:

(i) Weak duality: p∗ ≥ d∗

(ii) Strong duality: If the problem (4) is strictly feasible (i.e., there exists x ∈ int(K) such that
A(x) = b) then p∗ = d∗.

The condition that there exists x ∈ int(K) satisfying A(x) = b is known as Slater’s condition.
It is a condition that guarantees strong duality. We will prove Theorem 5.1 next lecture. To finish,
we give an example of a semidefinite program where strong duality does not hold.

Example where strong duality does not hold Consider the following simple semidefinite
program:

minimise
X∈S2

2X12

subject to X11 = 0, X � 0.

Here the SDP is specified by C = [ 0 1
1 0 ], A(X) = X11 and b = 0. The adjoint of A is A∗(y) =

[
y 0
0 0

]
.

The dual program is
maximise

y,Z
0

subject to

[
0 1
1 0

]
= Z +

[
y 0
0 0

]
Z � 0.

The value of the primal problem is p∗ = 0. However the dual problem is infeasible and so d∗ = −∞.
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