8 Maximum cut (continued)

Recall the maximum cut problem:

maximise
$$x^T L_G x$$

subject to $x_i \in \{-1, 1\}, i = 1, ..., n.$ (MC)

Lecturer: Hamza Fawzi

where L_G is the Laplacian quadratic form associated with a weighted graph G:

$$x^{T}L_{G}x = \frac{1}{2} \sum_{i,j \in V} w_{ij} (x_{i} - x_{j})^{2}.$$

More generally for any matrix $Y \in \mathbf{S}^n$ we have

$$Tr(L_G Y) = \frac{1}{2} \sum_{i,j \in V} w_{ij} (Y_{ii} + Y_{jj} - 2Y_{ij}).$$
(1)

We introduced the following semidefinite relaxation of (MC) in the last lecture.

Let v^* be the optimal value of (MC) and p^*_{SDP} be the optimal value of (SDP). We already saw that $p^*_{SDP} \ge v^*$. In today's lecture we prove the following result due to Goemans and Williamson:

Theorem 8.1 (Goemans-Williamson, [GW95]). Let v^* be the optimal value of (MC) and let p^*_{SDP} be the optimal value of (SDP). Then

$$\alpha \cdot p_{SDP}^* \le v^* \le p_{SDP}^* \tag{2}$$

where $\alpha = \frac{2}{\pi} \min_{t \in [-1,1)} \frac{\arccos(t)}{1-t} \approx 0.878$.

Proof. We have already proved the inequality (2) $v^* \leq p^*_{SDP}$ last lecture: if $x \in \{-1,1\}^n$ then letting $X = xx^T$ we see that X is feasible for the SDP (SDP) and $\text{Tr}(L_GX) = x^T L_G x$.

The main part of the proof is to show the inequality $\alpha p_{SDP}^* \leq v^*$. For this we will use a technique called randomised rounding. Let X be a solution of (SDP). Since $X \succeq 0$ we can write $X = V^T V$ where $V \in \mathbb{R}^{r \times n}$, or in other words $X_{ij} = \langle v_i, v_j \rangle$ where $v_i \in \mathbb{R}^r$ and $r = \operatorname{rank}(X)$. Since $X_{ii} = 1$ we know that $||v_i|| = 1$. We are now going to see a way to use the vectors v_1, \ldots, v_n to produce a random vector $x \in \{-1, 1\}^n$ whose covariance matrix will be "close to" X. The random vector x is defined by:

$$x_i = \operatorname{sign}(\langle v_i, z \rangle), \quad i = 1, \dots, n.$$
 (3)

where z is a standard Gaussian random vector in \mathbb{R}^r . It is not difficult to verify that $\mathbb{E}[x_i] = 0$. The next lemma computes the covariance matrix of x:

Lemma 1. For the random variables x_1, \ldots, x_n defined in (3) we have $\mathbb{E}[x_i x_j] = 1 - \frac{2}{\pi} \arccos(X_{ij})$.

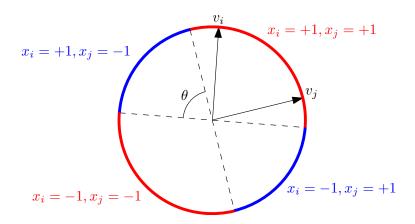


Figure 1: Computation of $\mathbb{E}[x_i x_j]$ for x defined in (3). Let $\theta = \arccos(\langle v_i, v_j \rangle)$ be the angle between v_i and v_j . The probability of having $x_i x_j = -1$ is $2\theta/2\pi$ and the probability of having $x_i x_j = +1$ is $(2\pi - 2\theta)/2\pi$.

Proof. The proof of this lemma is summarised in Figure 1. First note that the value of the pair $(\langle v_i, z \rangle, \langle v_j, z \rangle)$ only depends on the orthogonal projection of z on the subspace $\operatorname{span}(v_i, v_j)$. Since z is standard Gaussian we know its orthogonal projection on $\operatorname{span}(v_i, v_j)$ is distributed like a standard Gaussian vector on that two-dimensional subspace. In Figure 1 we represent vectors v_i and v_j in that subspace. Since the standard Gaussian distribution is rotation-invariant we see that the probability of having $x_i x_j = -1$ (blue region in the figure) is $2\theta/2\pi$ and the probability of having $x_i x_j = +1$ (red region in the figure) is $(2\pi - 2\theta)/2\pi$. Thus the expected value of $x_i x_j$ is given by:

$$\mathbb{E}[x_i x_j] = (-1) \cdot (2\theta/2\pi) + (+1) \cdot (1 - 2\theta/2\pi) = 1 - \frac{2}{\pi}\theta.$$

Since $\theta = \arccos(\langle v_i, v_j \rangle) = \arccos(X_{ij})$ we get the desired formula.

To summarize: from the solution $X \in \mathbf{S}^n$ of (SDP), we constructed a random vector x in $\{-1,1\}^n$ (defined in (3)) that satisfies $\mathbb{E}[x] = 0$ and whose covariance matrix $\Sigma = \mathbb{E}[xx^T]$ is given by

$$\Sigma_{ij} = f(X_{ij}) \tag{4}$$

where

$$f(t) = 1 - \frac{2}{\pi}\arccos(t). \tag{5}$$

Figure 2 shows the plot of f(t). Qualitatively, we see that f(t) is not too far from t and so the entries of Σ are not too far from the entries of X. Remember we know that

$$v^* \ge \mathbb{E}[x^T L_G x] = \operatorname{Tr}(L_G \Sigma).$$

(The inequality $v^* \geq \mathbb{E}[x^T L_G x]$ simply comes by taking expectations in the inequality $v^* \geq x^T L_G x$ which holds with probability 1 by definition of v^* .) Now, it is reasonable to expect since Σ is not too far off from X, that we can relate $\text{Tr}(L_G \Sigma)$ to $\text{Tr}(L_G X) = p^*_{SDP}$. Indeed it is not very difficult to do this here. Define:

$$\alpha = \min_{t \in [-1,1)} \frac{1 - f(t)}{1 - t} \approx 0.878. \tag{6}$$

The constant α measures in some sense how much you have to tilt the line y = t in Figure 2 so that it lies above the curve of f, while keeping the point (t = 1, y = 1) fixed. Then we can show:

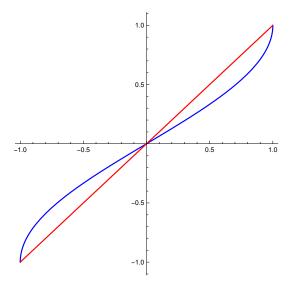


Figure 2: Plot of f(t) given by (5).

Claim 8.1. With Σ defined in (4) and α in (6) we have $\operatorname{Tr}(L_G\Sigma) \geq \alpha \operatorname{Tr}(L_GX)$.

Proof. From the definition of L_G (see (1)) and since $\Sigma_{ii} = X_{ii} = 1$ for i = 1, ..., n we have:

$$\operatorname{Tr}(L_{G}\Sigma) = \sum_{i,j \in V} w_{ij} (1 - \Sigma_{ij}) = \sum_{i,j \in V} w_{ij} (1 - f(X_{ij})) \stackrel{(*)}{\geq} \alpha \sum_{i,j \in V} w_{ij} (1 - X_{ij}) = \alpha \operatorname{Tr}(L_{G}X)$$

where in (*) we used that $w_{ij} \geq 0$.

The proof of the theorem is now complete since we showed

$$v^* \ge \operatorname{Tr}(L_G \Sigma) \ge \alpha \operatorname{Tr}(L_G X) = \alpha p_{SDP}^*.$$

References

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *Journal of the ACM*, 42(6):1115–1145, 1995. 1