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9 The stable set problem and the Lovász theta function

We now look at another application of semidefinite optimisation to combinatorial optimisation,
namely to the maximum stable set problem.

Stable set Let G = (V,E) be an undirected graph. A stable set (also known as an independent
set) in G is a subset S ⊆ V such that no two vertices in S are connected by an edge, i.e., i, j ∈
S ⇒ {i, j} /∈ E. The maximum stable set problem is the problem of finding the largest stable set
in a graph. The stable set problem can be formulated as the following problem:

maximise
x∈Rn,X∈Sn

n∑
i=1

xi

subject to x2i = xi ∀i ∈ V = {1, . . . , n}
xixj = 0 ∀ij ∈ E.

(1)

The constraint x2i = xi is equivalent to saying that xi ∈ {0, 1} and the stable set S corresponds
to the set of i such that xi = 1. Note that the constraint xixj = 0 ensures that S is a stable set.
The objective function

∑n
i=1 xi counts the cardinality of S. Solving the optimisation problem (1)

is computationally hard in general.

Semidefinite relaxation We are now going to define a semidefinite relaxation for (1). This
relaxation was first proposed by Lovász in [Lov79]. It allows us to get an upper bound on the
solution (1) by solving a semidefinite program.

maximise
x∈Rn,X∈Sn

n∑
i=1

xi

subject to Xii = xi i ∈ V
Xij = 0 ij ∈ E[

1 xT

x X

]
� 0

(2)

Problem (2) can be solved efficiently using algorithms for semidefinite programming. The next
theorem shows that (2) yields an upper bound on (1).

Theorem 9.1. Let α(G) be the solution of (1) and ϑ(G) be the solution of (2). Then α(G) ≤ ϑ(G).

Proof. It suffices to observe that if x is feasible for (1), then the pair (x,X = xxT ) is feasible for
(2) since [

1 xT

x xxT

]
=

[
1
x

] [
1
x

]T
� 0.

A natural question is to ask whether there is a constant c > 0 such that c · ϑ(G) ≤ α(G) for all
graphs G. Unfortunately this is not the case. Indeed one can show:
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Theorem 9.2. There exists a sequence of graphs (Gn) such that ϑ(Gn)/α(Gn) ≥
√
n

3 logn → ∞ as
n→∞.

The proof appears in [BTN01] and relies on the following lemmas. For any graph G = (V,E)
we define the complement graph of G as Ḡ = (V, Ē) where Ē = {{i, j} : i 6= j and {i, j} /∈ E}. The
first lemma gives a semidefinite formulation of ϑ(G) as a minimization problem.

Lemma 1. For any graph G we have

ϑ(G) = min. Z00

s.t. Zii = 1 ∀i ∈ V
Zij = 0 ∀ij ∈ Ē[
Z00 1T

1 Z

]
� 0

(3)

Proof. We use duality. If we let λi ∈ R be the dual variable for the constraint “Xii = xi” in (2),

µij ∈ R for the constraints “Xij = 0 for ij ∈ E” and Γ =
[
Z00 zT

z Z

]
� 0 the dual variable for the

SDP constraint in (2) we get that for any feasible (x,X) of (2):∑
i∈V

λi(Xii − xi) +
∑
ij∈E

µijXij + 〈
[
Z00 zT

z Z

]
,
[
1 xT
x X

]
〉 ≥ 0.

Rearranging, this is equivalent to∑
i∈V

(λi − 2zi)xi − 〈diag(λ) +M + Z,X〉 ≤ Z00.

where M ∈ Sn is defined as Mij = µij if ij ∈ E and 0 otherwise. If the dual variables (λ,M,Z)

satisfy −λi + 2zi = 1 for all i and diag(λ) + M + Z = 0 and
[
Z00 zT

z Z

]
� 0, then Z00 is an upper

bound to ϑ(G). The dual consists of finding the best such upper bound to ϑ(G) and so can be
expressed as:

min.
λ,M,

[
Z00 zT

z Z

] Z00

s.t.

[
Z00 zT

z Z

]
� 0

diag(λ) +M + Z = 0
Mij = 0 if ij ∈ Ē or i = j
λi − 2zi = 1 ∀i ∈ V.

The variables λ and M can be eliminated from the problem above. Indeed the second and third
constraints together can be equivalently written as: Zij = 0 for ij ∈ Ē and Zii = −λi for all i ∈ V .
If we do this simplification we get:

min. Z00

s.t.

[
Z00 zT

z Z

]
� 0

Zij = 0 ∀ij ∈ Ē
zi = −(1 + Zii)/2 ∀i ∈ V.

(4)
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Now using the fact that
[
A BT

B C

]
� 0 ⇐⇒

[
A −BT

−B C

]
� 0 this dual problem can be further

simplified by turning the minus sign in the last constraint to a plus sign:

min. Z00

s.t.

[
Z00 zT

z Z

]
� 0

Zij = 0 ∀ij ∈ Ē
zi = (1 + Zii)/2 ∀i ∈ V.

(5)

We show that this dual problem can be further simplified to (3). It is clear that the optimal value
of (5) is ≤ the optimal value of (3) ((3) corresponds to taking Zii = 1 and zi = −1). We need to
show the other inequality. Let (z, Z) be feasible points of (5). Define

Z̃ij =

{
Zij/zizj if i 6= j

1 if i = j.

If we show that
[
Z00 1T

1 Z̃

]
� 0 we are done. Let Z ′ij = Zij/(zizj). Note that[

Z00 1T

1 Z ′

]
=

[
1 0
0 diag(z)

]−1 [
Z00 zT

z Z

] [
1 0
0 diag(z)

]−1
� 0.

Now note that Z ′ii = Zii/((1 + Zii)/2)2 < 1 by the AM-GM inequality. Thus Z̃ is obtained from

Z ′ by adding a diagonal matrix with nonnegative entries and thus the matrix
[
Z00 1T

1 Z̃

]
is positive

semidefinite.
Slater condition holds so the optimal value of (3) is equal to ϑ(G): indeed the choice X = 1

2nIn
and xi = 1/(2n) for all i is strictly feasible for (2), namely it satisfies the linear equality constraints
and we have

[
1 xT
x X

]
� 0. One way to prove the latter is to use the Schur complement lemma, stated

below, and which we leave to the reader.

Lemma 2 (Schur complement).
[
A BT

B C

]
� 0 iff A � 0 and C −BA−1BT � 0.

We now state a second lemma.

Lemma 3. For any graph G we have ϑ(G)ϑ(Ḡ) ≥ n.

Proof. Let Z be an optimal solution for (3) for the graph G = (V,E). Let X = Z/Z00 = Z/ϑ(G)
and note that X is feasible for (2) applied to Ḡ. This shows that ϑ(Ḡ) ≥

∑
iXii = n/ϑ(G).

We are now ready to prove Theorem 9.2

Proof of Theorem 9.2. Consider a random undirected graph G on V = {1, . . . , n} defined as fol-
lows: for each pair {i, j} ⊂ V with i 6= j, we put an edge between i and j with probability 1/2
and independently of the other pairs1. One can show that when n is large enough then α(G) is
concentrated around 2 log(n), so that Pr[α(G) ≤ 3 log(n)] ≥ 3/4 for large enough n.

Note that G and Ḡ have the same distribution, so Pr[α(Ḡ) ≤ 3 log(n)] ≥ 3/4. By the inclusion-
exclusion principle we have

Pr[α(Ḡ) ≤ 3 log(n) and α(G) ≤ 3 log(n)] ≥ 3/4 + 3/4− 1 > 0.

1Alternatively you can think of such a graph in terms of its adjacency matrix A, where each entry Aij for i < j
is 0 with probability 1/2 and 1 with probability 1/2. Recall that the adjacency matrix of a graph G = (V,E) is a
matrix A ∈ R|V |×|V | where Aij = 1 if i and j are connected by an edge and 0 otherwise.
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This means that there exists at least one graph G such that max(α(G), α(Ḡ)) ≤ 3 log(n). Since
ϑ(G)ϑ(Ḡ) ≥ n we get that one of ϑ(G) ≥

√
n or ϑ(Ḡ) ≥

√
n is true. Thus inequality ϑ(Gn)/α(Gn) ≥√

n/(3 log n) is true for either Gn = G or Gn = Ḡ.
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