
Topics in Convex Optimisation (Michaelmas 2018) Lecturer: Hamza Fawzi

Exercises for revision class
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1 Diagonally dominant matrices

A matrix A ∈ Sn is called diagonally dominant if Aii ≥
∑

j 6=i |Aij | for all i = 1, . . . , n. Let Dn ⊂ Sn

be the set of diagonally dominant matrices.

(a) Show that if A is diagonally dominant then it is positive semidefinite.

(b) Recall the definition of proper cone. Show that the set Dn is a proper cone in Sn.

(c) Show that the extreme rays of Dn are spanned by the matrices

eie
T
i (i = 1, . . . , n) and (ei ± ej)(ei ± ej)T (1 ≤ i < j ≤ n).

where ei ∈ Rn is the vector with 1 in the i’th component and 0 elsewhere.

2 Euclidean distance matrices

Let (dij)1≤i<j≤n be
(
n
2

)
positive numbers. Show that the following two assertions are equivalent:

(i) There exist points x1, . . . , xn ∈ Rk (for some k) such that dij = ‖xi − xj‖2 for all i < j.

(ii) The n × n symmetric matrix D =
[
d2ij

]
1≤i,j≤n

(where dii = 0) is negative semidefinite on

the subspace orthogonal to e = (1, . . . , 1) ∈ Rn. [We say that a matrix A ∈ Sn is negative
semidefinite on a subspace L if xTAx ≤ 0 for all x ∈ L]

3 Faces of the positive semidefinite cone

(a) Recall the definition of a face of a convex set. Let V be a subspace of Rn. Show that

FV =
{
Y ∈ Sn+ : imY ⊆ V

}
is a face of the positive semidefinite cone. What is its dimension?

(b) Find a C ∈ Sn such that argminX∈Sn
+
〈C,X〉 = FV (this shows that FV is a so-called exposed

face of Sn+).

(c) Let X ∈ Sn+. Show that the smallest face of Sn+ containing X is FimX .

4 Existence of extreme points

Given a set C ⊆ Rn we say that C contains a straight line if there exists x ∈ C and v ∈ Rn such
that x+ tv ∈ C for all t ∈ R.

(a) Let C be a nonempty closed convex set that does not contain any straight lines. Show that
C has an extreme point [Hint: you can use an argument by induction on the dimension of C,
similar to the proof of Theorem 1.2 we did in lecture].

(b) Conversely, show that if C is a closed convex set with an extreme point then it does not
contain any straight lines.
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5 Extreme points in linear programming

(a) Recall the definition of extreme point of a convex set.

(b) Let A ∈ Rm×n, b ∈ Rm and consider the convex set P = {x ∈ Rn+ : Ax = b}. Show that any
extreme point x of P satisfies | supp(x)| ≤ m where supp(x) := {i ∈ [n] : xi 6= 0} [Hint: Show
that if x is an extreme point of P then ker(A) ∩ {y ∈ Rn : supp(y) ⊆ supp(x)} = {0}].
Use Exercise 4 to show that if P is not empty then it has at least one extreme point.

(c) Use the result of part (b) to prove Carathéodory’s theorem:

Carathéodory’s theorem: Let S ⊂ RN be a finite set. Then any element of conv(S)
can be expressed as a convex combination of at most N + 1 points of S.

6 Extreme points in semidefinite programming

Part (a) of this exercise is the analogue of Exercise 5(a) for the case of semidefinite programming.

(a) Let A : Sn → Rm be a linear map, b ∈ Rm and let C = {X ∈ Sn+ : A(X) = b}. Show that
any extreme point X of C satisfies r(r + 1)/2 ≤ m where r = rankX [Hint: Show that if X
is an extreme point of C then ker(A) ∩ {Y ∈ Sn : im(Y ) ⊆ im(X)} = {0}].
Use Exercise 4 to show that if C is nonempty then it has at least one extreme point.

(b) Let A,B ∈ Sn. Use part (a) to show that the set

R(A,B) = {(xTAx, xTBx) : x ∈ Rn} ⊆ R2

is convex. (This set is known as the numerical range or field of values of the pair (A,B).)
[Hint: consider {(〈A,X〉, 〈B,X〉) : X ∈ Sn+}].

(c) Prove the following result, known as the S-lemma: Let A,B ∈ Sn and assume that for any
x ∈ Rn, xTAx ≥ 0 ⇒ xTBx ≥ 0. Assume furthermore that there exists z ∈ Rn such that
zTAz > 0. Show that there exists λ ≥ 0 such that B � λA.

Give an example of A,B ∈ S2 to show that the condition of existence of z ∈ Rn such that
zTAz > 0 cannot be removed in general.

7 Matrix square root

(a) Let A,B � 0. Show that if A2 � B2 then A � B [Hint: let v be an eigenvector of A−B and
consider vT (A+B)(A−B)v].

(b) Give an example of A,B ∈ S2
++ such that A � B but A2 6� B2.

8 Newton polytope

For a polynomial p(x) =
∑

α∈Nn pαxα we define the Newton polytope of p to be

Newton(p) = conv{α ∈ Nn : pα 6= 0}.
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(For example the Newton polytope of p(x) = x31x2 + 2x1x2 − 4x1x
2
2 is conv {(3, 1), (1, 1), (1, 2)} ⊂

R2.) Show that if

p =
∑
i

q2i

then for all i, Newton(qi) ⊆ 1
2 Newton(p). [Hint: consider an extreme point of conv(

⋃
i Newton(qi))].

9 Homogeneous and nonhomogeneous polynomials

A polynomial p ∈ R[x1, . . . , xn] is called homogeneous of degree d if it only involves monomials
of degree exactly d. Given a nonhomogeneous polynomial p of degree d we can homogenise it by
introducing an additional variable x0 via

p̄(x0, x1, . . . , xn) = xd0p(x1/x0, . . . , xn/x0) (1)

(a) Show that (1) is well-defined. What is the homogenisation of p(x1, x2) = x21x
2
2 − 2x1x2 + 1?

(b) Show that p is nonnegative if and only if p̄ is nonnegative.

(c) Show that p is a sum of squares if and only if p̄ is a sum of squares.

(d) Show that if p is a homogeneous polynomial of degree 2d and p =
∑

k q
2
k then the qk must be

homogeneous of degree d.

10 A nonnegative polynomial that is not a sum of squares

In lecture we saw the Motzkin polynomial M(x, y) = x4y2 + x2y4 + 1− 3x2y2 which is an explicit
example of a nonnegative polynomial that is not a sum of squares in the case (n, 2d) = (2, 6)
(where n is the number of variables and 2d the degree). In this exercise we look at a polynomial in
3 variables of degree 4 (i.e., (n, 2d) = (3, 4)) that is nonnegative but not a sum-of-squares. Consider
the following polynomial (due to Choi and Lam [CL77]).

Q(x, y, z) = x2y2 + x2z2 + y2z2 + 1− 4xyz.

(a) Show that Q(x, y, z) ≥ 0 for all (x, y, z) ∈ R2.

(b) Show that Q is not a sum of squares.

11 Positive and decomposable maps

(Based on exercise 3.178 in [BPT12]) A map Λ : Sn1 → Sn2 is called positive if Λ(A) � 0 whenever
A � 0.

(a) Show that if Λ has the form Λ(A) =
∑r

i=1 P
T
i APi where P1, . . . , Pr ∈ Rn1×n2 then Λ is

positive. Such maps are called decomposable.

(b) To any linear map Λ : Sn1 → Sn2 we can consider the polynomial p(x, y) = yTΛ(xxT )y where
x ∈ Rn1 and y ∈ Rn2 . Show that Λ is a positive map if and only if p is nonnegative. Show
that Λ is decomposable if and only if p is a sum-of-squares.
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(c) Consider the following map Λ : S3 → S3 due to M.-D. Choi [Cho75]:

Λ(A) = 2

a11 + a22 0 0
0 a22 + a33 0
0 0 a33 + a11

−A.
(i) Show that Λ is positive [Hint: in the case a33 ≥ a11 use Λ(A) = DAD+

[
2a22 −2a12 0
−2a12 2a33 0

0 0 2a11

]
with D = diag(1, 1,−1); then generalise using cyclic symmetry of Λ].

(ii) Show that Λ is not decomposable. [Hint: show that the associated polynomial p(x, y) is
not a sum-of-squares].
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