
Topics in Convex Optimisation (Michaelmas 2018) Lecturer: Hamza Fawzi

Exercises for revision class

Contents

1 Diagonally dominant matrices 2

2 Euclidean distance matrices 3

3 Faces of the positive semidefinite cone 3

4 Existence of extreme points 4

5 Extreme points in linear programming 5

6 Extreme points in semidefinite programming 5

7 Matrix square root 7

8 Newton polytope 7

9 Homogeneous and nonhomogeneous polynomials 8

10 A nonnegative polynomial that is not a sum of squares 8

11 Positive and decomposable maps 9

1



1 Diagonally dominant matrices

A matrix A ∈ Sn is called diagonally dominant if Aii ≥
∑

j 6=i |Aij | for all i = 1, . . . , n. Let Dn ⊂ Sn

be the set of diagonally dominant matrices.

(a) Show that if A is diagonally dominant then it is positive semidefinite.

(b) Recall the definition of proper cone. Show that the set Dn is a proper cone in Sn.

(c) Show that the extreme rays of Dn are spanned by the matrices

eie
T
i (i = 1, . . . , n) and (ei ± ej)(ei ± ej)T (1 ≤ i < j ≤ n).

where ei ∈ Rn is the vector with 1 in the i’th component and 0 elsewhere.

Solution.

(a) For any x ∈ Rn we have

xTAx =
n∑
i=1

Aiix
2
i + 2

∑
i<j

Aijxixj
(a)

≥
n∑
i=1

Aiix
2
i −

∑
i<j

|Aij |(x2i + x2j )

=

n∑
i=1

(Aii −
∑
j 6=i
|Aij |)x2i ≥ 0

where in (a) we used the arithmetic-geometric mean inequality.

(b) A proper cone is a closed, convex, pointed, full-dimensional cone. That Dn is closed is easy
to see. To prove that Dn is convex one can use the definition of convexity and use the fact
that the absolute value function is convex. Alternatively it is easy to verify that

Dn = {A ∈ Sn : Aii ≥
∑
j 6=i

εijAij ∀εij ∈ {−1, 1}, ∀i = 1, . . . , n}.

Thus Dn is an intersection of closed halfspaces and is thus a closed convex set. Showing that
Dn is pointed is not difficult. We can show that Dn has nonempty interior by showing that
I ∈ Dn where I is the identity matrix. Indeed if we let N be the entrywise infinity norm on
Sn then it is not hard to see that the ball {A : N(A− I) ≤ 1/n} is in Dn.

(c) We first show that the given matrices are extreme rays: since the given matrices are all rank-
one they are extreme rays of Sn+ and since Dn ⊆ Sn+ it follows that they are also extreme rays
of Dn.

We now show that they are the only extreme rays. To do this we show that any A ∈ Dn can
be expressed as a conic combination of the given matrices. Indeed note that we have

A =
∑
i<j

|Aij |(ei ± ej)(ei ± ej)T +

n∑
i=1

(Aii −
∑
j 6=i
|Aij |)eieTi

where in the first term the sign ± is “+” if Aij > 0 and “−” if Aij < 0.
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2 Euclidean distance matrices

Let (dij)1≤i<j≤n be
(
n
2

)
positive numbers. Show that the following two assertions are equivalent:

(i) There exist points x1, . . . , xn ∈ Rk (for some k) such that dij = ‖xi − xj‖2 for all i < j.

(ii) The n × n symmetric matrix D =
[
d2ij

]
1≤i,j≤n

(where dii = 0) is negative semidefinite on

the subspace orthogonal to e = (1, . . . , 1) ∈ Rn. [We say that a matrix A ∈ Sn is negative
semidefinite on a subspace L if xTAx ≤ 0 for all x ∈ L]

Solution. We first show (i) ⇒ (ii). Assume dij = ‖xi − xj‖2 for some x1, . . . , xn ∈ Rk. Then
Dij = d2ij = ‖xi‖2 + ‖xj‖2 − 2〈xi, xj〉. Take z orthogonal to e = (1, . . . , 1)., i.e.,

∑n
i=1 zi = 0. Then

zTDz =
∑
ij

zizj(‖xi‖2 + ‖xj‖2 − 2〈xi, xj〉)
(∗)
= −2

∑
ij

zizj〈xi, xj〉 = −2

∥∥∥∥∥
n∑
i=1

zixi

∥∥∥∥∥
2

≤ 0.

where in (∗) we used the fact that
∑n

i=1 zi = 0.
We now show (ii)⇒ (i). Assume D is negative semidefinite on the subspace orthogonal to e =

(1, . . . , 1) ∈ Rn. Let P be the n×(n−1) matrix whose columns are ej−e1 where j = 2, . . . , n, where
ek is the vector with a one in component k and zeros elsewhere. Note that im(P ) is the subspace
orthogonal to e. Thus P TDP is negative semidefinite and we can thus find vectors x2, . . . , xn such
that (P TDP )ij = −2〈xi, xj〉 for all i, j ≥ 2 (the reason why we put a constant 2 will be clear later).
Define x1 = 0. We now claim that the vectors x1, . . . , xn satisfy d2ij = ‖xi − xj‖2 as desired. To

show this observe that by definition of P we have (P TDP )ij = (ei−e1)TD(ej−e1) = d2ij−d2i1−d2j1.
Thus by definition of the vectors x2, . . . , xn we have:

d2ij − d2i1 − d2j1 = −2〈xi, xj〉 ∀i, j ≥ 2. (1)

Taking i = j ≥ 2 in (1) tells us that d21i = ‖xi‖2 = ‖xi − x1‖2 for all i ≥ 2. Then taking i 6= j with
i, j ≥ 2 tells us that d2ij = ‖xi‖2 + ‖xj‖2− 2〈xi, xj〉 = ‖xi−xj‖2 for all i, j ≥ 2. This completes the
proof.

3 Faces of the positive semidefinite cone

(a) Recall the definition of a face of a convex set. Let V be a subspace of Rn. Show that

FV =
{
Y ∈ Sn+ : imY ⊆ V

}
is a face of the positive semidefinite cone. What is its dimension?

(b) Find a C ∈ Sn such that argminX∈Sn
+
〈C,X〉 = FV (this shows that FV is a so-called exposed

face of Sn+).

(c) Let X ∈ Sn+. Show that the smallest face of Sn+ containing X is FimX .

Solution.

(a) A subset F of a convex set C is a face if it is convex and if whenever (a + b)/2 ∈ F with
a, b ∈ C, then a, b ∈ F . We now proceed to show that FV is a face of Sn+.
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– We first need to show that FV is convex. Assume Y1, Y2 ∈ FV . Then it is clear that any
convex combination (in fact any linear combination) of Y1 and Y2 is in FV .

– Now assume that Y ∈ FV and Y = (A + B)/2 where A,B ∈ Sn+. We have to show
that A,B ∈ FV . Let x orthogonal to V . Then we have 0 = xTY x = (xTAx+ xTBx)/2
thus it follows that xTAx = xTBx = 0 since A,B � 0. Again since A,B � 0 this also
implies that x ∈ ker(A) and x ∈ ker(B). We have thus shown that V ⊥ ⊆ ker(A) hence
im(A) ⊆ V , and similarly for B as desired.

The dimension of FV is r(r + 1)/2 where r = dimV .

(b) Take C ∈ Sn defined by C|V = 0 and C|V ⊥ = IV ⊥ (where IV ⊥ is the identity on V ⊥). Since
C � 0 we have 〈C,X〉 ≥ 0 for all X � 0. Now we claim that 〈C,X〉 = 0 if and only if X ∈ FV .
Indeed if X ∈ FV we have CX = 0 since im(X) ⊆ V = ker(C) and so 〈C,X〉 = Tr(CX) = 0.
On the other hand if Tr(CX) = 0 then if we let (vi) be an orthonormal basis of V ⊥ so that
C =

∑
i viv

T
i we get 0 = Tr(

∑
i viv

T
i X) =

∑
i v
T
i Xvi. Since X � 0 we get that necessarily

vi ∈ ker(X) for all i. This means that V ⊥ ⊆ ker(X) i.e., im(X) ⊆ V as desired.

(c) Let X ∈ Sn+ and let r = rank(X). Observe that we can write X = Q
[
X0 0
0 0

]
QT where X0 ∈

Sr++ is invertible and Q orthogonal. Using this notation FimX = {Q
[
Z 0
0 0

]
QT : Z ∈ Sr+}.

Let F be the smallest closed face containing X. We will show that FimX ⊆ F . Let Z ∈ Sr+.
Since X0 is invertible we can find small enough ε > 0 such that X0 � εZ. Now observe
that X = Q

[
εZ 0
0 0

]
QT + Q

[
X0−εZ 0

0 0

]
QT . Each term in this sum is in the cone Sn+, thus by

definition of face they must be in F . Thus this proves that Q
[
Z 0
0 0

]
QT is in F . Since this is

true for any Z ∈ Sr+ we have thus shown that FimX ⊆ F as desired.

4 Existence of extreme points

Given a set C ⊆ Rn we say that C contains a straight line if there exists x ∈ C and v ∈ Rn such
that x+ tv ∈ C for all t ∈ R.

(a) Let C be a nonempty closed convex set that does not contain any straight lines. Show that
C has an extreme point [Hint: you can use an argument by induction on the dimension of C,
similar to the proof of Theorem 1.2 we did in lecture].

(b) Conversely, show that if C is a closed convex set with an extreme point then it does not
contain any straight lines.

Solution.

(a) We use induction on the dimension. It is clear in dimension 1. Assume C ⊂ Rn has dimension
n. Let x ∈ P and consider a straight line L that goes through x. The intersection of L and
C is a closed interval possibly unbounded with at least one extreme point z that lies on the
boundary of C. Let F be a face of C dimension ≤ n−1 such that z ∈ F and use the induction
hypothesis on F .

(b) We will show the contrapositive. Assume C contains a straight line, i.e., there exists x ∈ C
and v such that x + tv ∈ C for all t ∈ R. We will show that for any z ∈ C we must have
z + tv ∈ C for all t ∈ R. Indeed for any t ∈ R and s ≥ 1 we have

1

s
(x+ stv) + (1− 1

s
)z = z + tv + (x− z)/s ∈ C

Letting s→∞ and using the closedness of C we see that z+ tv ∈ C for any t ∈ R. It follows
from this that C does not have any extreme point.

4



5 Extreme points in linear programming

(a) Recall the definition of extreme point of a convex set.

(b) Let A ∈ Rm×n, b ∈ Rm and consider the convex set P = {x ∈ Rn+ : Ax = b}. Show that any
extreme point x of P satisfies | supp(x)| ≤ m where supp(x) := {i ∈ [n] : xi 6= 0} [Hint: Show
that if x is an extreme point of P then ker(A) ∩ {y ∈ Rn : supp(y) ⊆ supp(x)} = {0}].
Use Exercise 4 to show that if P is not empty then it has at least one extreme point.

(c) Use the result of part (b) to prove Carathéodory’s theorem:

Carathéodory’s theorem: Let S ⊂ RN be a finite set. Then any element of conv(S)
can be expressed as a convex combination of at most N + 1 points of S.

Solution.

(a) A point x is an extreme point of a convex set C if whenever x = λa+ (1−λ)b with 0 < λ < 1
and a, b ∈ C it holds a = b = x.

(b) Let x be an extreme point of P . As indicated in the hint we will prove that ker(A) ∩
{y ∈ Rn : supp(y) ⊆ supp(x)} = {0}. Note that this will prove the desired result: indeed
{y ∈ Rn : supp(y) ⊆ supp(x)} is a subspace of dimension | supp(x)| and so for the intersection
with ker(A) to be {0} we must have | supp(x)| ≤ n− dim(ker(A)) = dim im(A) ≤ m.

We now prove the claim. Assume y satisfies Ay = 0 and supp(y) ⊆ supp(x). Since xi > 0 for
i ∈ supp(x) we get that x ± εy ∈ P for small enough ε > 0. Since x is an extreme point it
must be that y = 0.

To show that P has at least one extreme point when nonempty, simply note that it does not
contain any straight lines since Rn+ does not contain any straight lines.

(c) Let n = |S| and let A be the m × n matrix whose columns are the elements of S. Let
b ∈ conv(S). Consider the convex set P = {λ ∈ Rn+ : Aλ = b,

∑n
i=1 λi = 1}. By part (b)

we know that P has an extreme point with at most m+ 1 nonzero components in λ. This is
exactly what we want.

6 Extreme points in semidefinite programming

Part (a) of this exercise is the analogue of Exercise 5(a) for the case of semidefinite programming.

(a) Let A : Sn → Rm be a linear map, b ∈ Rm and let C = {X ∈ Sn+ : A(X) = b}. Show that
any extreme point X of C satisfies r(r + 1)/2 ≤ m where r = rankX [Hint: Show that if X
is an extreme point of C then ker(A) ∩ {Y ∈ Sn : im(Y ) ⊆ im(X)} = {0}].
Use Exercise 4 to show that if C is nonempty then it has at least one extreme point.

(b) Let A,B ∈ Sn. Use part (a) to show that the set

R(A,B) = {(xTAx, xTBx) : x ∈ Rn} ⊆ R2

is convex. (This set is known as the numerical range or field of values of the pair (A,B).)
[Hint: consider {(〈A,X〉, 〈B,X〉) : X ∈ Sn+}].
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(c) Prove the following result, known as the S-lemma: Let A,B ∈ Sn and assume that for any
x ∈ Rn, xTAx ≥ 0 ⇒ xTBx ≥ 0. Assume furthermore that there exists z ∈ Rn such that
zTAz > 0. Show that there exists λ ≥ 0 such that B � λA.

Give an example of A,B ∈ S2 to show that the condition of existence of z ∈ Rn such that
zTAz > 0 cannot be removed in general.

Solution.

(a) Let X be an extreme point of C. We will show that the only Y ∈ Sn that satisfies A(Y ) = 0
and im(Y ) ⊆ im(X) is Y = 0. Assume Y is such a point. Since X is positive definite on
im(X) we have that X± εY ∈ C for small enough ε > 0. Since X is an extreme point it must
be that Y = 0.

Now observe that the set {Y ∈ Sn : im(Y ) ⊆ im(X) is a subspace of dimension r(r + 1)/2
where r = dim im(X) = rank(X). Since the intersection of ker(A) and this subspace is {0} it
must be that r(r + 1)/2 ≤ codimSn(ker(A)) = m.

Finally note that C does not contain any straight lines since Sn+ does not contain any straight
lines. It thus follows from Exercise 4 that if C is not empty then it has at least one extreme
point.

(b) Let T = {(〈A,X〉, 〈B,X〉) : X ∈ Sn+}. It is clear that T is convex. We will show that
R(A,B) = T . The inclusion R(A,B) ⊆ T is easy: simply take X = xxT . For the second
inclusion let (u, v) ∈ T . Let C = {X ∈ Sn+ : 〈A,X〉 = u, 〈B,X〉 = v}. Since C is
nonempty part (a) tells us that C contains at least one point X where r = rank(X) satisfies
r(r + 1)/2 ≤ 2, and so r = 1. This means that X = xxT for some x and so (u, v) =
(xTAx, xTBx) ∈ R(A,B) as desired.

(c) The assumption tells us that the problem

min
x∈Rn

xTBx : xTAx = 1 (2)

is feasible and its optimal value is nonnegative. Consider the following semidefinite relaxation:

min 〈B,X〉 : 〈A,X〉 = 1, X � 0. (3)

By part (a) with m = 2 (see also argument of part (b)) we know that the optimal value of
(2) and (3) are the same. The dual of the SDP (3) is:

max λ : B − λA � 0. (4)

The assumption that there exists z such that zTAz > 0 tells us that (3) is strictly feasible:
indeed one can take X = εI + γzzT with ε, γ > 0 appropriately chosen such that 〈A,X〉 = 1.
By strong duality we know that the optimal value of (4) is also nonnegative. Thus this means
there exists λ ≥ 0 such that B − λA � 0.

To show that the assumption on the existence of z such that zTAz > 0 is needed in general
consider A =

[
0 0
0 −1

]
and B = [ 0 1

1 0 ]. Note that xTAx ≥ 0 ⇒ xTBx ≥ 0 for any x ∈ R2.
However B − λA =

[
0 1
1 λ

]
is not positive semidefinite for any choice of λ ≥ 0.
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7 Matrix square root

(a) Let A,B � 0. Show that if A2 � B2 then A � B [Hint: let v be an eigenvector of A−B and
consider vT (A+B)(A−B)v].

(b) Give an example of A,B ∈ S2
++ such that A � B but A2 6� B2.

Solution.

(a) Let λ be an eigenvalue of A− B and v be an associated eigenvector. We want to show that
λ ≥ 0. On the one hand we have

vT (A+B)(A−B)v = vT (A2 −B2 +BA−AB)v = vT (A2 −B2)v ≥ 0

where we used the fact that vT (BA− AB)v = 0 since BA− AB is skew-symmetric. On the
other hand we have

vT (A+B)(A−B)v = λvT (A+B)v.

Since vT (A+B)v > 0 (since A+B � 0) we get that λ ≥ 0.

(b) Take A =
[
5/2 0
0 4

]
� 0 and B = [ 2 1

1 2 ] � 0. Then A− B =
[
1/2 −1
−1 2

]
� 0. However A2 − B2 =[

5/4 −4
−4 11

]
6� 0 because its determinant is 55/4− 16 = −9/4 < 0.

8 Newton polytope

For a polynomial p(x) =
∑

α∈Nn pαxα we define the Newton polytope of p to be

Newton(p) = conv{α ∈ Nn : pα 6= 0}.

(For example the Newton polytope of p(x) = x31x2 + 2x1x2 − 4x1x
2
2 is conv {(3, 1), (1, 1), (1, 2)} ⊂

R2.) Show that if

p =
∑
i

q2i

then for all i, Newton(qi) ⊆ 1
2 Newton(p). [Hint: consider an extreme point of conv(

⋃
i Newton(qi))].

Solution. Consider Q = conv {
⋃
i Newton(qi)}. We will show that Q ⊆ 1

2 Newton(p) and this
will prove the claim. To do this let α be an extreme point of Q. We will show that necessarily
p2α > 0. Note that the coefficient of x2α in

∑
i qi(x)2 is given by∑

i

q2i,α +
∑
i

∑
γ 6=γ′

s.t.γ+γ′=2α

qi,γqi,γ′ (5)

where qi,α is the coefficient of the monomial xα in qi(x). Since α is an extreme point of Q there
must exist at least one i such that qi,α 6= 0 and so the first term of (5) is positive. Also, by definition
of extreme point, if γ, γ′ ∈ Q are such that 1

2(γ + γ′) = α then necessarily γ = γ′ = α. This shows
that the second term of (5) is zero. This shows that the coefficient of x2α in

∑
i qi(x)2 = p(x) is

positive and so 2α ∈ Newton(p). Since this is true for any extreme point α of Q, and Q is the
convex hull of its extreme points, we get Q ⊆ 1

2 Newton(p).
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9 Homogeneous and nonhomogeneous polynomials

A polynomial p ∈ R[x1, . . . , xn] is called homogeneous of degree d if it only involves monomials
of degree exactly d. Given a nonhomogeneous polynomial p of degree d we can homogenise it by
introducing an additional variable x0 via

p̄(x0, x1, . . . , xn) = xd0p(x1/x0, . . . , xn/x0) (6)

(a) Show that (6) is well-defined. What is the homogenisation of p(x1, x2) = x21x
2
2 − 2x1x2 + 1?

(b) Show that p is nonnegative if and only if p̄ is nonnegative.

(c) Show that p is a sum of squares if and only if p̄ is a sum of squares.

(d) Show that if p is a homogeneous polynomial of degree 2d and p =
∑

k q
2
k then the qk must be

homogeneous of degree d.

Solution.

(a) The operation (6) consists in replacing any monomial cαxα in p by cαx
d−|α|
0 xα. The ho-

mogenisation of p(x1, x2) = x21x
2
2 − 2x1x2 + 1 is p(x0, x1, x2) = x21x

2
2 − 2x20x1x2 + x40.

(b) If p̄ is nonnegative then p(x1, . . . , xn) = p̄(1, x1, . . . , xn) is clearly nonnegative. Now assume
p ≥ 0 and let us show p̄ ≥ 0. We know that deg p must be even. If x0 6= 0 then p̄(x0, . . . , xn) ≥
0 using (6). To show that p̄(x0, x1, . . . , xn) ≥ 0 when x0 = 0 we can simply use a limit
argument p̄(0, x1, . . . , xn) = limx0→0 p̄(x0, . . . , xn).

(c) If p̄ is a sum of squares then clearly p is also a sum of squares since p(x1, . . . , xn) =
p̄(1, x1, . . . , xn). Conversely it is easy to verify that if p =

∑
k q

2
k then p̄ =

∑
k(q̄k)

2 where q̄k
are the homogenisation of qk.

(d) Let xα be a monomial of smallest degree that has nonzero coefficient in any of the qk. Then
the coefficient of x2α in p(x) must be strictly positive. Since p is homogeneous this means that
2|α| = 2d i.e., |α| = d. Similar argument shows that any monomial with nonzero coefficient
in any of the qk must have degree at most d. Thus all the monomials in any of the qk must
have degree d exactly.

10 A nonnegative polynomial that is not a sum of squares

In lecture we saw the Motzkin polynomial M(x, y) = x4y2 + x2y4 + 1− 3x2y2 which is an explicit
example of a nonnegative polynomial that is not a sum of squares in the case (n, 2d) = (2, 6)
(where n is the number of variables and 2d the degree). In this exercise we look at a polynomial in
3 variables of degree 4 (i.e., (n, 2d) = (3, 4)) that is nonnegative but not a sum-of-squares. Consider
the following polynomial (due to Choi and Lam [CL77]).

Q(x, y, z) = x2y2 + x2z2 + y2z2 + 1− 4xyz.

(a) Show that Q(x, y, z) ≥ 0 for all (x, y, z) ∈ R2.

(b) Show that Q is not a sum of squares.

Solution.
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(a) This follows directly from the arithmetic-geometric mean inequality.

(b) We give a proof similar to the one we saw in lecture concerning Motzkin polynomial. Assume
Q =

∑
k q

2
k. Since Q has degree four we know that the qk must be of degree 2. Write

qk(x, y, z) = akx
2 + bky

2 + ckz
2 + dkxy + ekxz + fkyz + gkx+ hky + ikz + jk.

Since there are no terms x4, y4, z4 in Q we get ak = bk = ck = 0 for all k. Next since there
are no terms x2, y2, z2 in Q we get gk = hk = ik = 0. But then there is no way to form the
term −4xyz in Q using

∑
k q

2
k.

11 Positive and decomposable maps

(Based on exercise 3.178 in [BPT12]) A map Λ : Sn1 → Sn2 is called positive if Λ(A) � 0 whenever
A � 0.

(a) Show that if Λ has the form Λ(A) =
∑r

i=1 P
T
i APi where P1, . . . , Pr ∈ Rn1×n2 then Λ is

positive. Such maps are called decomposable.

(b) To any linear map Λ : Sn1 → Sn2 we can consider the polynomial p(x, y) = yTΛ(xxT )y where
x ∈ Rn1 and y ∈ Rn2 . Show that Λ is a positive map if and only if p is nonnegative. Show
that Λ is decomposable if and only if p is a sum-of-squares.

(c) Consider the following map Λ : S3 → S3 due to M.-D. Choi [Cho75]:

Λ(A) = 2

a11 + a22 0 0
0 a22 + a33 0
0 0 a33 + a11

−A.
(i) Show that Λ is positive [Hint: in the case a33 ≥ a11 use Λ(A) = DAD+

[
2a22 −2a12 0
−2a12 2a33 0

0 0 2a11

]
with D = diag(1, 1,−1); then generalise using cyclic symmetry of Λ].

(ii) Show that Λ is not decomposable. [Hint: show that the associated polynomial p(x, y) is
not a sum-of-squares].

Solution.

(a) If A is an n1 × n1 positive semidefinite matrix and P is any n1 × n2 matrix, then P TAP
is positive semidefinite. Thus if A is positive semidefinite then

∑
i P

T
i APi is also positive

semidefinite and thus the map A 7→
∑

i P
T
i APi is positive.

(b) We start by showing that Λ is positive if and only if p is nonnegative:

• Λ positive ⇒ p nonnegative: If Λ is positive then Λ(xxT ) is positive semidefinite for
any x ∈ Rn, and thus yTΛ(xxT )y is nonnegative for all y. This shows that p(x, y) is
nonnegative.

• p nonnegative ⇒ Λ positive: Assume that p(x, y) is nonnegative. We will show that Λ
is a positive map. Let A =

∑n
i=1 xix

T
i be a positive semidefinite matrix. Then for any y

we have yTΛ(A)y =
∑n

i=1 y
TΛ(xix

T
i )y =

∑n
i=1 p(xi, y) ≥ 0. This is true for all y hence

Λ(A) is positive semidefinite.
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We now show that Λ is decomposable if and only if p is a sum-of-squares.

• Λ decomposable ⇒ p sum-of-squares: Assume that Λ is decomposable. We will show
that p(x, y) is a sum of squares. Let Pis be such that Λ(A) =

∑
i P

T
i APi. Then for any

x and y we have: p(x, y) = yT (
∑

i P
T
i xx

TPi)y =
∑

i(x
TPiy)T (xTPiy) =

∑
i qi(x, y)2

where qi(x, y) = xTPiy. Hence p is a sum of squares.

• p sum-of-squares ⇒ Λ decomposable: Assume that p is a sum of squares. We will show
that Λ is decomposable. Let qis be such that p(x, y) =

∑
i qi(x, y)2. Observe that since

p is homogeneous of degree 4, the qi must be homogeneous of degree 2. Furthermore
observe that qi cannot contain monomials where the degree of an xj or a yj is greater than
1. In other words, this means that qi has the form qi(x, y) =

∑
k,l(Pi)k,lxkyl = xTPiy.

Hence for any x, y we have:

yTΛ(xxT )y = p(x, y) =
∑
i

qi(x, y)2

=
∑
i

(xTPiy)2 =
∑
i

(xTPiy)T (xTPiy) = yT (
∑
i

P Ti xx
TPi)y.

In other words we showed that for any fixed x, the following equality holds for any y:
yT (Λ(xxT )− (

∑
i P

T
i xx

TPi))y = 0 which implies Λ(xxT )− (
∑

i P
T
i xx

TPi) = 0 since the
matrix is symmetric. Thus this shows that for any x we have Λ(xxT ) =

∑
i P

T
i xx

TPi.
Thus by linearity of Λ this shows that Λ(A) =

∑
i P

T
i APi for any symmetric matrix A,

and this means that Λ is decomposable. This completes the proof.

(c) (i) Let T be the cyclic permutation matrix T =
[
0 1 0
0 0 1
1 0 0

]
and note that Λ(TAT T ) = TΛ(A)T T .

Let A � 0 and note that after cyclically permuting the rows/columns we can assume
a33 ≥ a11. Now observe that Λ(A) can be written as:

Λ(A) = DAD +

 2a22 −2a12 0
−2a12 2a33 0

0 0 2a11


where D = diag(1, 1,−1). The first term is positive semidefinite. The second term also
since a11 ≥ 0 and the upper-left 2 × 2 has a determinant equal to 4(a22a33 − a212) ≥
4(a22a11 − a212) ≥ 0 since A � 0.

(ii) We now show Λ is not decomposable by showing that the polynomial p(x, y) = yTΛ(xxT )y
is not a sum-of-squares. We have

Λ(xxT ) =

x21 + 2x22 −x1x2 −x1x3
−x1x2 x22 + 2x23 −x2x3
−x1x3 −x2x3 x33 + 2x21


The polynomial p in this case is

p(x, y) = x21y
2
1 + x22y

2
2 + x23y

2
3 + 2(x22y

2
1 + x33y

2
2 + x21y

2
3)

− 2(x1x2y1y2 + x1x3y1y3 + x2x3y2y3).

Assume p =
∑

k q
2
k where qk are bilinear polynomials of the form

qk(x, y) = akx1y1 + bkx1y2 + ckx1y3

+ dkx2y1 + ekx2y2 + fkx2y3

+ gkx3y1 + hkx3y2 + ikx3y3.

10



Since p has no terms x21y
2
2, x

2
2y

2
3, x

2
3y

2
1 we must get that

∑
k b

2
k =

∑
k f

2
k =

∑
k g

2
k = 0

i.e., bk = fk = gk = 0 for all k. Now considering the monomial −2x1x2y1y2 we get that
−2 = 2

∑
k akek i.e.,

∑
k akek = −1. Similarly we get∑

k

akek =
∑
k

akik =
∑
k

ekik = −1. (7)

On the other hand if we look at the monomials x21y
2
1, x22y

2
2, x23, y

2
3 we get that∑

k

a2k =
∑
k

e2k = 1 =
∑
k

i2k = 1. (8)

Combining (7) and (8) and using equality case for Cauchy-Schwarz we get a contradic-
tion: indeed we must have ek = −ak and ik = −ak for all k but then ek = ik which
contradicts the last equality of (7).
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