Exercise sheet 1

1. Let $f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$ where $a_1,\dots,a_m \in \mathbb{R}^n$ and $b_1,\dots,b_m \in \mathbb{R}$. Explain why f(x) is convex. Given $x \in \mathbb{R}^n$ let $I(x) = \{i \in \{1,\dots,m\} : a_i^T x + b_i = f(x)\}$. Show that the subdifferential of f at x is given by

Lecturer: Hamza Fawzi

$$\partial f(x) = \operatorname{conv} \{a_i : i \in I(x)\}\$$

where conv(X) denotes the *convex hull* of a set X.

- 2. Prove that the following functions are convex on their domain:
 - (a) $f(x) = ||Ax b||_2^2$ where $x \in \mathbb{R}^n$
 - (b) $f(x) = \log(\sum_{i=1}^{n} e^{x_i})$ where $x \in \mathbb{R}^n$
 - (c) f(x) = sum of k largest components of x, where $x \in \mathbb{R}^n \text{ and } k \in \{1, \dots, n\}$. (for example, $f(x) = \max_{i=1,\dots,n} x_i$ when k = 1, and $f(x) = x_1 + \dots + x_n$ when k = n.)
 - (d) f(X) = largest eigenvalue of X (X real symmetric $n \times n$ matrix)
 - (e) $f(X) = -\log \det X$ where X is a symmetric positive definite matrix
 - (f) $f(x,y) = \sum_{i=1}^{n} x_i \log(x_i/y_i)$ where $x,y \in \mathbb{R}^n_+$

Also specify which functions are smooth, in which case provide an expression for the gradient. For nonsmooth functions provide an expression for a subgradient (if possible, compute the full subdifferential $\partial f(x)$)

- 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Show that f is m-strongly convex iff $f (m/2)||x||_2^2$ is convex. Show that ∇f is L-Lipschitz iff $(L/2)||x||_2^2 f$ is convex.
- 4. Prove that the gradient method, with the following backtracking line search, converges at the rate O(1/k): at each iteration k, initialize t_k to 1 and keep updating $t_k \leftarrow \beta t_k$ (where $\beta \in (0,1)$) until $f(x_k t_k \nabla f(x_k)) \leq f(x_k) (1/2)t_k ||\nabla f(x_k)||_2^2$.
- 5. Consider the problem of minimizing a convex function f(x) on a closed convex set C, i.e., we want to compute $\min_{x \in C} f(x)$. The projected gradient method works as follows: starting from $x_0 \in C$, let $x_{k+1} = P_C(x_k t_k \nabla f(x_k))$ where P_C is the Euclidean projection on C defined by

$$P_C(x) = \underset{y \in C}{\operatorname{argmin}} \|y - x\|_2^2.$$

By adapting the convergence proof of the gradient method seen in lecture, show that the projected gradient method converges with a rate O(1/k) when ∇f is assumed L-Lipschitz, and the step size t_k is fixed $t_k = t \in (0, 1/L]$.

6. Implement the gradient method and fast gradient method to minimize the following convex function (logistic regression loss)

$$f(x) = \sum_{i=1}^{N} \log \left[1 + \exp(y_i a_i^T x) \right]$$

where $a_1, \ldots, a_N \in \mathbb{R}^n$ and $y_1, \ldots, y_N \in \{-1, +1\}$ are randomly generated. Take N = 50 and n = 30. Plot $f(x_k) - f^*$ as a function of k. Comment.