Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

12 Mirror descent (non-Euclidean gradient method)

In this lecture we come back to the problem of minimizing a nonsmooth convex function on a closed
convex set C:

min f(z).

zeC
Projected subgradient iterations work as follows:

T = Po(ay — tegr) (1)

where g, € 0f(x) and P is the Euclidean projection on C. Analysis of this method with suitable
step size (e.g., Polyak step size) guarantees that after k iterations we have

Gllzo — z*[|2

fbest,k - f* < \/m (2)
where fpestr = min{f(zo), ..., f(zx)} and G = max{||goll2, - - .. [grl2}

Dependence on Euclidean inner product The subgradient method (1) depends on the Eu-
clidean structure we put on R™. This is apparent from the use of the Euclidean projection Pg, and
from the identification of the subgradient as an element of R™ (rather than as an element of the
dual space). This dependence on the Euclidean structure is reflected in the analysis (2) where G is
the Lipschitz constant of f wrt Euclidean norm.

Mirror descent We consider in this lecture a non-Euclidean version of subgradient descent,
known as mirror descent. We fix a smooth convex function ¢ defined on the convex set C' C R™.
We assume ¢ is 1-strongly convex wrt some norm || - || on R”, i.e.,

1
o) > 6(y) + Vo) (v —y) + gllz—yl*  VYa,y € dom(9).
The Bregman divergence associated to ¢ is

Dy(z|y) = ¢(z) — ¢(y) — Vo(y)" (z — ).

Note that Dy(z|ly) > ||z —y||>/2 by strong convexity of ¢. The mirror descent algorithm is defined
by the iterates:

Tyt = argrrclin {trgi (x — xx) + Dy(z||zx) } - (3)
xe

Remark. One can easily check that with ¢(z) = ||x||3/2 we recover the subgradient method (1).
Indeed iterate (1) can be equivalently written as xj11 = argmingcc {trgi (x — k) + ||z — z4[3/2}.

Analysis of mirror descent With a suitable choice of step size, one can show that the sequence
() produced by (3) satisfies:

G/ Dy (a*[|0)
g — VY
fbest,k f = /7]{: 1
where G is the Lipschitz constant of f wrt || - ||. We prove this now.



Bregman projection Let C be a closed convex set and let g ¢ C. We know that if Z is the
Fuclidean projection of xg on C, then for any x € C we have the following inequality

lz = zoll3 > [l& = woll3 + Il — 213. (4)

This inequality is another way of saying that the angle at & formed by the vectors zg — 2 and x — 2
is obtuse (see Figure 1).

Zo

=

Figure 1: If 2 is the Euclidean projection of xy on the convex set C, then the following inequality
holds for all z € C: ||z — z0||3 > ||Z — x0|3 + ||x — #||3 (obtuse angle at &). The previous inequality
generalizes to projections defined using general Bregman divergences.

Inequality (4) generalizes to projections defined using the Bregman divergence. More precisely,
if we define
& = argmin Dy (z||z0),
zeC

then one can show that the following inequality holds, for any « € C:
Dy(xllzo) = Dy(E|zo) + Dy(z2). (5)

This is proved in the following lemma, in the more general functional setting (take g to be the
indicator function of C' to recover (5)).

Lemma 1. Consider the optimization problem mingegrn {g(x) + Dy(z|zo)}. Point 2 is optimal iff
9(x) + Dy(z(lzo) > g(&) + Dy(#[lxo) + Dy(z2)
for all x € dom(g).

Proof. This lemma would be trivial if we didn’t have the last term Dg(z||%). The whole point of this
lemma is this last term. Using the definition of Dy note that & € argmin {g(z) + ¢(z) — Vé(zo) 2 }.
This means that 0 € 9g(2) + Vo(&) — Vé(zo), or equivalently

— V§(&) € dg(&) — Vd(xo) = d(g — V(wo)"-)(2). (6)
This implies, by definition of subgradient, that we have for any x:
9(x) = Vo(z0)'w > g(#) = Vo(xo)" & — Ve(2)" (z — 2) (7)



We are now ready to proceed with the analysis of mirror descent iterations. Our goal will be
to bound Dy (z*||xk+1) in terms of Dy(x*|lz)). We apply Lemma 1 to (3) where g(z) = Ic(x) +
tV f(xr)T (z — x1,), with Ic being the indicator function of C. Since z* € C we have

tV fan)" (2% — 2p) + Do(a*|lax) >tV f(2r)" (@h11 — 28) + Dg(wprallan) + Dy(a*||zpin)-

Rearranging, this tells us

Dy(a*|lzg1) < Dg(a*|lax) — Dg(wnpallzr) + tV f(zr)" (2 — wpg1) + tV F (21)" (2% — 21)
(a)
< Dy(a*||zk) — Do(@psllze) + 1V F(@p) el zn — T | + ¢V f(zn) T (2 — zp)
@) ) 1 1 .
< Dy(x"||rg) — Dg(zpylze) + thVf(&“k)Hz + i\lxk — ||+ tV ()T (2% — a)

—

0

< Dylallan) + 1V F@l2 + (S~ o))

where in (a) we used the (generalized) Cauchy-Schwarz inequality, in (b) we used the arithmetic-
geometric mean inequality, in (c) we used that Dy(allb) > 3|la — b||* (strong convexity of ¢) and
convexity of f. We now finish the proof like we did for the subgradient method. We apply the
inequality recursively to get at the end

k k
Dy(a*|wrs1) < Dola*llwo) + )GV (@)l + D t(f* — f(z:)

i=0 i=0
which, after rearranging gives
k k
D tilf(@i) = %) < Dyla*[lzo) + Y 6]V f (a2
i=0 1=0

Define fyest,x = min {f(zo),..., f(zx)} to get

Dy(z*||z k42087 £ 2
fbest,k - f* < ¢(Ic H 0) + Zl—O Z|]l f( z)H '

The rest of the proof is like with subgradient method.
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