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12 Mirror descent (non-Euclidean gradient method)

In this lecture we come back to the problem of minimizing a nonsmooth convex function on a closed
convex set C:

min
x∈C

f(x).

Projected subgradient iterations work as follows:

xk+1 = PC(xk − tkgk) (1)

where gk ∈ ∂f(xk) and PC is the Euclidean projection on C. Analysis of this method with suitable
step size (e.g., Polyak step size) guarantees that after k iterations we have

fbest,k − f∗ ≤
G‖x0 − x∗‖2√

k + 1
(2)

where fbest,k = min {f(x0), . . . , f(xk)} and G = max{‖g0‖2, . . . , ‖gk‖2}.

Dependence on Euclidean inner product The subgradient method (1) depends on the Eu-
clidean structure we put on Rn. This is apparent from the use of the Euclidean projection PC , and
from the identification of the subgradient as an element of Rn (rather than as an element of the
dual space). This dependence on the Euclidean structure is reflected in the analysis (2) where G is
the Lipschitz constant of f wrt Euclidean norm.

Mirror descent We consider in this lecture a non-Euclidean version of subgradient descent,
known as mirror descent. We fix a smooth convex function φ defined on the convex set C ⊂ Rn.
We assume φ is 1-strongly convex wrt some norm ‖ · ‖ on Rn, i.e.,

φ(x) ≥ φ(y) +∇φ(y)T (x− y) +
1

2
‖x− y‖2 ∀x, y ∈ dom(φ).

The Bregman divergence associated to φ is

Dφ(x‖y) = φ(x)− φ(y)−∇φ(y)T (x− y).

Note that Dφ(x‖y) ≥ ‖x− y‖2/2 by strong convexity of φ. The mirror descent algorithm is defined
by the iterates:

xk+1 = argmin
x∈C

{
tkg

T
k (x− xk) +Dφ(x‖xk)

}
. (3)

Remark. One can easily check that with φ(x) = ‖x‖22/2 we recover the subgradient method (1).
Indeed iterate (1) can be equivalently written as xk+1 = argminx∈C

{
tkg

T
k (x− xk) + ‖x− xk‖22/2

}
.

Analysis of mirror descent With a suitable choice of step size, one can show that the sequence
(xk) produced by (3) satisfies:

fbest,k − f∗ ≤
G
√
Dφ(x∗‖x0)√
k + 1

where G is the Lipschitz constant of f wrt ‖ · ‖. We prove this now.
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Bregman projection Let C be a closed convex set and let x0 /∈ C. We know that if x̂ is the
Euclidean projection of x0 on C, then for any x ∈ C we have the following inequality

‖x− x0‖22 ≥ ‖x̂− x0‖22 + ‖x− x̂‖22. (4)

This inequality is another way of saying that the angle at x̂ formed by the vectors x0− x̂ and x− x̂
is obtuse (see Figure 1).

x0

x

x̂

Figure 1: If x̂ is the Euclidean projection of x0 on the convex set C, then the following inequality
holds for all x ∈ C: ‖x− x0‖22 ≥ ‖x̂− x0‖22 + ‖x− x̂‖22 (obtuse angle at x̂). The previous inequality
generalizes to projections defined using general Bregman divergences.

Inequality (4) generalizes to projections defined using the Bregman divergence. More precisely,
if we define

x̂ = argmin
x∈C

Dφ(x‖x0),

then one can show that the following inequality holds, for any x ∈ C:

Dφ(x‖x0) ≥ Dφ(x̂‖x0) +Dφ(x‖x̂). (5)

This is proved in the following lemma, in the more general functional setting (take g to be the
indicator function of C to recover (5)).

Lemma 1. Consider the optimization problem minx∈Rn {g(x) +Dφ(x‖x0)}. Point x̂ is optimal iff

g(x) +Dφ(x‖x0) ≥ g(x̂) +Dφ(x̂‖x0) +Dφ(x‖x̂)

for all x ∈ dom(g).

Proof. This lemma would be trivial if we didn’t have the last term Dφ(x‖x̂). The whole point of this
lemma is this last term. Using the definition ofDφ note that x̂ ∈ argmin

{
g(x) + φ(x)−∇φ(x0)

Tx
}

.
This means that 0 ∈ ∂g(x̂) +∇φ(x̂)−∇φ(x0), or equivalently

−∇φ(x̂) ∈ ∂g(x̂)−∇φ(x0) = ∂(g −∇φ(x0)
T ·)(x̂). (6)

This implies, by definition of subgradient, that we have for any x:

g(x)−∇φ(x0)
Tx ≥ g(x̂)−∇φ(x0)

T x̂−∇φ(x̂)T (x− x̂). (7)

Now we finish the proof. We have, for any x:

g(x) +Dφ(x‖x0)− g(x̂)−Dφ(x̂‖x0) = (g(x)−∇φ(x0)
Tx)− (g(x̂)−∇φ(x0)

T x̂) + φ(x)− φ(x̂)

by (7)

≥ −∇φ(x̂)T (x− x̂) + φ(x)− φ(x̂) = Dφ(x‖x̂).
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We are now ready to proceed with the analysis of mirror descent iterations. Our goal will be
to bound Dφ(x∗‖xk+1) in terms of Dφ(x∗‖xk). We apply Lemma 1 to (3) where g(x) = IC(x) +
t∇f(xk)

T (x− xk), with IC being the indicator function of C. Since x∗ ∈ C we have

t∇f(xk)
T (x∗ − xk) +Dφ(x∗‖xk) ≥ t∇f(xk)

T (xk+1 − xk) +Dφ(xk+1‖xk) +Dφ(x∗‖xk+1).

Rearranging, this tells us

Dφ(x∗‖xk+1) ≤ Dφ(x∗‖xk)−Dφ(xk+1‖xk) + t∇f(xk)
T (xk − xk+1) + t∇f(xk)

T (x∗ − xk)
(a)

≤ Dφ(x∗‖xk)−Dφ(xk+1‖xk) + ‖t∇f(xk)‖∗‖xk − xk+1‖+ t∇f(xk)
T (x∗ − xk)

(b)

≤ Dφ(x∗‖xk)−Dφ(xk+1‖xk) +
1

2
‖t∇f(xk)‖2∗ +

1

2
‖xk − xk+1‖2 + t∇f(xk)

T (x∗ − xk)
(c)

≤ Dφ(x∗‖xk) +
1

2
‖t∇f(xk)‖2∗ + t(f∗ − f(xk)).

where in (a) we used the (generalized) Cauchy-Schwarz inequality, in (b) we used the arithmetic-
geometric mean inequality, in (c) we used that Dφ(a‖b) ≥ 1

2‖a − b‖
2 (strong convexity of φ) and

convexity of f . We now finish the proof like we did for the subgradient method. We apply the
inequality recursively to get at the end

Dφ(x∗‖xk+1) ≤ Dφ(x∗‖x0) +
k∑
i=0

t2i ‖∇f(xi)‖2∗ +
k∑
i=0

t(f∗ − f(xi))

which, after rearranging gives

k∑
i=0

ti(f(xi)− f∗) ≤ Dφ(x∗‖x0) +

k∑
i=0

t2i ‖∇f(xi)‖2∗.

Define fbest,k = min {f(x0), . . . , f(xk)} to get

fbest,k − f∗ ≤
Dφ(x∗‖x0)∑k

i=0 ti
+

∑k
i=0 t

2
i ‖∇f(xi)‖2∗∑k
i=0 ti

.

The rest of the proof is like with subgradient method.
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