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8 Conjugate functions

Theorem 8.1 (Separating hyperplane theorem). Let C ⊂ Rn convex and assume z /∈ C. Then
there exists y ∈ Rn \ {0} and b ∈ R such that{

yT z ≥ b
yTx ≤ b ∀x ∈ C.

(1)

If C is closed, then y and b can be chosen so that inequalities in (1) are strict.

Definition 8.1 (Conjugate function). Given a function f : D → R where D ⊆ Rn, the conjugate
of f is defined as

f∗(y) = sup
x∈D

yTx− f(x).

Note that for any y, we have a lower bound on f , namely yTx − f∗(y) ≤ f(x), ∀x ∈ D.
Maximizing over y tells us that f∗∗(x) ≤ f(x). The next theorem tells us that we actually have
equality when f is convex and closed (we say that f is closed when epi(f) is closed).

Theorem 8.2 (Biduality). If f : D → R is convex and epi(f) := {(x, t) ∈ D × R : t ≥ f(x)} is
closed, then f∗∗ = f .

Sketch of proof. We will show that epi(f) = epi(f∗∗). The inclusion ⊆ already follows from f∗∗ ≤ f .
To prove the reverse inclusion assume (x̄, t̄) /∈ epi(f). We will show that (x̄, t̄) /∈ epi(f∗∗). Since
epi(f) is closed and convex, the separating hyperplane theorem tells us there is (a, b) ∈ Rn×R\{0}
such that {

aT x̄− bt̄ > c

aTx− bt < c ∀(x, t) ∈ epi(f).
(2)

Letting t→ +∞ in the second line above tells us that b > 0. We assume wlog that b = 1. Putting
t = f(x) in the second line of (2) tells us that aTx−f(x) < c for all x ∈ D which implies, f∗(a) ≤ c.
In turn this means that f∗∗(x̄) ≥ aT x̄ − f∗(a) ≥ aT x̄ − c > t̄ where in the last inequality we used
(2). This shows that (x̄, t̄) /∈ epi(f∗∗) as desired.

Lemma 1 (Subgradients). Let f : D → R be convex and closed (i.e., epi(f) is closed). For any
x ∈ D and y we have

f∗(y) = yTx− f(x) ⇔ y ∈ ∂f(x) ⇔ x ∈ ∂f∗(y). (3)

Proof. Fix y. The vector x ∈ D maximizes the function ξ 7→ yT ξ − f(ξ) iff the zero element is in
the subdifferential at ξ = x. This tells us that f∗(y) = yTx− f(x) iff y ∈ ∂f(x), which is the first
equivalence.

We now show y ∈ ∂f(x)⇒ x ∈ ∂f∗(y). This is immediate since if y ∈ ∂f(x) then for any z we
have f∗(z) ≥ zTx− f(x) = f∗(y) + (z − y)Tx which means that x ∈ ∂f∗(y). The reverse inclusion
x ∈ ∂f∗(y)⇒ y ∈ ∂f(x) follows from f∗∗ = f .
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Theorem 8.3 (Smoothness of f∗). Assume f : D → R is closed and m-strongly convex function.
Then f∗ is defined everywhere on Rn, smooth, and for any y ∈ Rn we have

∇f∗(y) = argmax
x∈D

yTx− f(x).

(The argmax has a unique solution.) Furthermore ∇f∗ is (1/m)-Lipschitz wrt ‖ · ‖2.

Proof. If f is closed and strongly convex then for any fixed y the function x 7→ yTx − f(x) has a
unique maximizer, x∗(y) = argmaxx∈D y

Tx− f(x). Since the maximizer is unique, (3) tells us that
∂f∗(y) = {x∗(y)}. In other words this means that f∗ is smooth at y and ∇f∗(y) = x∗(y).

For the last statement: we use the fact that for any strongly convex function φ(u) we have
φ(u) ≥ φ(u∗)+(m/2)‖u−u∗‖22 where u∗ = argminφ(u). Using this inequality for the strongly convex
function x 7→ f(x)−yTx gives us f(x∗(z))−yTx∗(z) ≥ f(x∗(y))−yTx∗(y)+(m/2)‖x∗(y)−x∗(z)‖22.
Using the similar inequality with x 7→ f(x)− zTx and adding up gives us

m‖x∗(y)− x∗(z)‖22 ≤ (x∗(z)− x∗(y))T (z − y) ≤ ‖x∗(z)− x∗(y)‖2‖z − y‖2

which is what we wanted.

Examples

• If f(x) = 1
2x

TAx+ bTx with A positive definite, then f∗(y) = 1
2(y − b)TA−1(y − b)− c

• If f(x) = ‖x‖ for some norm ‖ · ‖, then f∗(y) is the indicator function of the unit ball for the
dual norm, i.e.,

f∗(y) =

{
0 if ‖y‖∗ ≤ 1

+∞ else

where
‖y‖∗ = sup

‖x‖=1
yTx.

On Rn, the dual norm of ‖x‖p = (
∑

i x
p
i )

1/p (for p ≥ 1) is ‖ · ‖p′ where 1/p + 1/p′ = 1 (dual
of `1 norm is `∞ norm).
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