Lecturer: Hamza Fawzi

8 Conjugate functions

Theorem 8.1 (Separating hyperplane theorem). Let $C \subset \mathbb{R}^n$ convex and assume $z \notin C$. Then there exists $y \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$ such that

$$\begin{cases} y^T z \ge b \\ y^T x \le b \end{cases} \quad \forall x \in C. \tag{1}$$

If C is closed, then y and b can be chosen so that inequalities in (1) are strict.

Definition 8.1 (Conjugate function). Given a function $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}^n$, the conjugate of f is defined as

$$f^*(y) = \sup_{x \in D} y^T x - f(x).$$

Note that for any y, we have a lower bound on f, namely $y^Tx - f^*(y) \leq f(x)$, $\forall x \in D$. Maximizing over y tells us that $f^{**}(x) \leq f(x)$. The next theorem tells us that we actually have equality when f is convex and closed (we say that f is closed when $\operatorname{epi}(f)$ is closed).

Theorem 8.2 (Biduality). If $f: D \to \mathbb{R}$ is convex and $epi(f) := \{(x, t) \in D \times \mathbb{R} : t \geq f(x)\}$ is closed, then $f^{**} = f$.

Sketch of proof. We will show that $\operatorname{epi}(f) = \operatorname{epi}(f^{**})$. The inclusion \subseteq already follows from $f^{**} \leq f$. To prove the reverse inclusion assume $(\bar{x}, \bar{t}) \notin \operatorname{epi}(f)$. We will show that $(\bar{x}, \bar{t}) \notin \operatorname{epi}(f^{**})$. Since $\operatorname{epi}(f)$ is closed and convex, the separating hyperplane theorem tells us there is $(a, b) \in \mathbb{R}^n \times \mathbb{R} \setminus \{0\}$ such that

$$\begin{cases} a^T \bar{x} - b\bar{t} > c \\ a^T x - bt < c \quad \forall (x, t) \in \operatorname{epi}(f). \end{cases}$$
 (2)

Letting $t \to +\infty$ in the second line above tells us that b > 0. We assume wlog that b = 1. Putting t = f(x) in the second line of (2) tells us that $a^T x - f(x) < c$ for all $x \in D$ which implies, $f^*(a) \le c$. In turn this means that $f^{**}(\bar{x}) \ge a^T \bar{x} - f^*(a) \ge a^T \bar{x} - c > \bar{t}$ where in the last inequality we used (2). This shows that $(\bar{x}, \bar{t}) \notin \text{epi}(f^{**})$ as desired.

Lemma 1 (Subgradients). Let $f: D \to \mathbb{R}$ be convex and closed (i.e., epi(f) is closed). For any $x \in D$ and y we have

$$f^*(y) = y^T x - f(x) \iff y \in \partial f(x) \iff x \in \partial f^*(y). \tag{3}$$

Proof. Fix y. The vector $x \in D$ maximizes the function $\xi \mapsto y^T \xi - f(\xi)$ iff the zero element is in the subdifferential at $\xi = x$. This tells us that $f^*(y) = y^T x - f(x)$ iff $y \in \partial f(x)$, which is the first equivalence.

We now show $y \in \partial f(x) \Rightarrow x \in \partial f^*(y)$. This is immediate since if $y \in \partial f(x)$ then for any z we have $f^*(z) \geq z^T x - f(x) = f^*(y) + (z - y)^T x$ which means that $x \in \partial f^*(y)$. The reverse inclusion $x \in \partial f^*(y) \Rightarrow y \in \partial f(x)$ follows from $f^{**} = f$.

Theorem 8.3 (Smoothness of f^*). Assume $f: D \to \mathbb{R}$ is closed and m-strongly convex function. Then f^* is defined everywhere on \mathbb{R}^n , smooth, and for any $y \in \mathbb{R}^n$ we have

$$\nabla f^*(y) = \operatorname*{argmax}_{x \in D} y^T x - f(x).$$

(The argmax has a unique solution.) Furthermore ∇f^* is (1/m)-Lipschitz wrt $\|\cdot\|_2$.

Proof. If f is closed and strongly convex then for any fixed y the function $x \mapsto y^T x - f(x)$ has a unique maximizer, $x^*(y) = \operatorname{argmax}_{x \in D} y^T x - f(x)$. Since the maximizer is unique, (3) tells us that $\partial f^*(y) = \{x^*(y)\}$. In other words this means that f^* is smooth at y and $\nabla f^*(y) = x^*(y)$.

For the last statement: we use the fact that for any strongly convex function $\phi(u)$ we have $\phi(u) \geq \phi(u^*) + (m/2) \|u - u^*\|_2^2$ where $u^* = \operatorname{argmin} \phi(u)$. Using this inequality for the strongly convex function $x \mapsto f(x) - y^T x$ gives us $f(x^*(z)) - y^T x^*(z) \geq f(x^*(y)) - y^T x^*(y) + (m/2) \|x^*(y) - x^*(z)\|_2^2$. Using the similar inequality with $x \mapsto f(x) - z^T x$ and adding up gives us

$$m||x^*(y) - x^*(z)||_2^2 \le (x^*(z) - x^*(y))^T (z - y) \le ||x^*(z) - x^*(y)||_2 ||z - y||_2$$

which is what we wanted.

Examples

- If $f(x) = \frac{1}{2}x^TAx + b^Tx$ with A positive definite, then $f^*(y) = \frac{1}{2}(y-b)^TA^{-1}(y-b) c$
- If f(x) = ||x|| for some norm $||\cdot||$, then $f^*(y)$ is the indicator function of the unit ball for the dual norm, i.e.,

$$f^*(y) = \begin{cases} 0 & \text{if } ||y||_* \le 1\\ +\infty & \text{else} \end{cases}$$

where

$$||y||_* = \sup_{||x||=1} y^T x.$$

On \mathbb{R}^n , the dual norm of $||x||_p = (\sum_i x_i^p)^{1/p}$ (for $p \ge 1$) is $||\cdot||_{p'}$ where 1/p + 1/p' = 1 (dual of ℓ_1 norm is ℓ_∞ norm).