Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

8 Conjugate functions

Theorem 8.1 (Separating hyperplane theorem). Let C' C R™ convex and assume z ¢ C. Then
there exists y € R™\ {0} and b € R such that

TZ
{y >b (1)

yTe <b Vx € C.

If C is closed, then y and b can be chosen so that inequalities in (1) are strict.

Definition 8.1 (Conjugate function). Given a function f : D — R where D C R", the conjugate
of f is defined as

F*y) = sup y"a — f().
€D
Note that for any y, we have a lower bound on f, namely y'2z — f*(y) < f(x), Yz € D.
Maximizing over y tells us that f**(z) < f(z). The next theorem tells us that we actually have
equality when f is convex and closed (we say that f is closed when epi(f) is closed).

Theorem 8.2 (Biduality). If f : D — R is convex and epi(f) := {(x,t) € DxR:t > f(x)} is
closed, then f** = f.

Sketch of proof. We will show that epi(f) = epi(f**). The inclusion C already follows from f** < f.
To prove the reverse inclusion assume (Z,t) ¢ epi(f). We will show that (Z,t) ¢ epi(f**). Since
epi(f) is closed and convex, the separating hyperplane theorem tells us there is (a,b) € R" xR\ {0}

such that
alz —bt>c¢
ale —bt <c Y(x,t) € epi(f).

(2)

Letting t — +o00 in the second line above tells us that b > 0. We assume wlog that b = 1. Putting
t = f(z) in the second line of (2) tells us that a’x— f(x) < c for all # € D which implies, f*(a) < c.
In turn this means that f**(z) > o’z — f*(a) > a’'Z — ¢ >  where in the last inequality we used
(2). This shows that (Z,t) ¢ epi(f**) as desired. O

Lemma 1 (Subgradients). Let f : D — R be convex and closed (i.e., epi(f) is closed). For any
x €D and y we have

Fy)=y'e—f(z) & yedf(zx) & xedf(y). 3)

Proof. Fix y. The vector z € D maximizes the function ¢ — y”¢ — f(£) iff the zero element is in
the subdifferential at & = z. This tells us that f*(y) =y’ — f(z) iff y € 9f(z), which is the first
equivalence.

We now show y € df(x) = = € 9f*(y). This is immediate since if y € df(z) then for any z we
have f*(z) > 272 — f(x) = f*(y) + (2 — y)" 2 which means that z € 9f*(y). The reverse inclusion
x € 0f*(y) =y € 0f(x) follows from f** = f. O



Theorem 8.3 (Smoothness of f*). Assume f: D — R is closed and m-strongly convex function.
Then f* is defined everywhere on R™, smooth, and for any y € R™ we have

Vf*(y) = argmaxy’x — f(x).
xeD

(The argmaz has a unique solution.) Furthermore V f* is (1/m)-Lipschitz wrt || - ||2.

Proof. If f is closed and strongly convex then for any fixed y the function x — y72 — f(z) has a
unique maximizer, z*(y) = argmax,.p y’ * — f(z). Since the maximizer is unique, (3) tells us that
df*(y) = {=*(y)}. In other words this means that f* is smooth at y and V f*(y) = z*(y).

For the last statement: we use the fact that for any strongly convex function ¢(u) we have
d(u) > p(u*)+(m/2)||u—u*||3 where u* = argmin ¢(u). Using this inequality for the strongly convex
function &+ f(z) —y"x gives us f(z*(2)) —y"2*(2) > f(2*(y)) —y"a*(y) + (m/2)[2*(y) —2*(2) 3.
Using the similar inequality with z — f(z) — 272 and adding up gives us

mllz*(y) — 2*(2) |5 < (z*(2) — 2*(v)" (z — y) < [l2*(2) — 2*(W)ll2]lz — vl
which is what we wanted. O

Examples

o If f(z) = %xTAac + Tz with A positive definite, then f*(y) = %(y —b0)TA(y—b)—c

o If f(z) = ||z| for some norm || - ||, then f*(y) is the indicator function of the unit ball for the
dual norm, i.e.,
. 0 if ||ly|l« <1
ro-fo
+oo else

where

lylls = sup y”z.
lz]|=1

On R", the dual norm of ||z|[, = (3

of 1 norm is ¢o, norm).

)P (for p> 1) is || - ||, where 1/p+1/p’ =1 (dual

et}
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