
Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

Theorem 0.1. Let f1, f2 be two convex functions defined on some D ⊂ Rn. Then for any x we
have

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x).

(The right-hand side is the Minkowski sum of sets A+B = {a+ b : a ∈ A, b ∈ B}).

The proof is adapted from the lecture slides at the following URL (page 12):

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-253-convex-analysis-and-optimization-spring-2012/lecture-notes/MIT6_253S12_lec12.pdf

Proof. The inclusion ⊇ is obvious. We focus on ⊆. The proof will use strong duality. Let g ∈
∂(f1 + f2)(x) so that

f1(y) + f2(y) ≥ f1(x) + f2(x) + 〈g, y − x〉 (1)

for all y ∈ D. Consider the following convex optimization problem

min
y1,y2∈D

f1(y1) + f2(y2)− 〈g, y2 − x〉 s.t. y1 = y2.

By (1), the minimum is equal to f1(x) + f2(x). Let’s formulate the dual: the Lagrangian is

L(y1, y2, λ) = f1(y1) + f2(y2)− 〈g, y2 − x〉+ 〈λ, y2 − y1〉

and the dual function is

G(λ) = min
y1,y2

L =

(
min
y1

f1(y1)− 〈λ, y1〉
)
+

(
min
y2

f2(y2)− 〈g − λ, y2〉
)
+ 〈g, x〉. (2)

By strong duality (Slater’s condition holds here, just take y1 = y2 any point in the interior of D)
we know that there exists λ such that G(λ) = f1(x) + f2(x). Using (2) and rearranging we get(

min
y1∈D

f1(y1)− (f1(x) + 〈λ, y1 − x〉)
)
+

(
min
y2∈D

f2(y2)− (f2(x) + 〈g − λ, y2 − x〉)
)

= 0.

Note that each minimum term is equal to 0: both terms are ≤ 0 by taking y1,2 = x and since they
sum to 0 both must be equal to 0.

This means that λ ∈ ∂f1(x) and g − λ ∈ ∂f2(x) as desired.
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