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Numerical Analysis — Lecture 4

Algorithm 1.15 (The fast Fourier transform (FFT)) We assume that n is a power of 2,i.e. n = 2m = 27,
and for y € Il,,,, denote by

(0)

y® = {y2;}jez and Y ={yzj}jez

the even and odd portions of y, respectively. Note that y®), y(©) € I1,,,.
Suppose that we already know the inverse DFT of both ‘short” sequences,
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It is then possible to assemble z = F,,}y in a small number of operations. Since w3™ = 1, we obtain
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Therefore, it costs just m products to evaluate the first half of x, provided that ™ and z(©) are known.
It actually costs nothing to evaluate the second half, since

wi (M0 — it m+l _ L - (E) ‘ (O) (=0,

wl, Worm = —Wam, Tmgt =Ty — Wop, Ty s ..,m—1.

To execute FFT, we start from vectors of unit length and in each s-th stage, s = 1...p, assemble 2P~°
vectors of length 2° from vectors of length 257!: this costs 2°~2°~! = 2P~! products. Altogether, the
cost of FFT is p2P~! = 1nlog, n products.
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For n = 1024 = 20, say, the cost is &~ 5 x 103 products, compared to ~ 10° for naive matrix multiplica-
tion! For n = 220 the respective numbers are &~ 1.05 x 10" and ~ 1.1 x 10'?, which represents a saving
by a factor of more than 10°.

Matlab demo: Check out the online animation for computing the FFT at http://www.damtp.cam.
ac.uk/user/hf323/M21-II-NA/demos/fft_gui/fft_gui.html and download the Matlab GUI
from there to follow the computation of each single FFT term.

Example 1.16 Computation of FFT for n = 4 in general, and for the vector y = (1,1, —1, —1) in particu-
lar.
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2 Partial differential equations of evolution

Method 2.1 We consider the solution of the diffusion equation

ou  0%u

—_— = <zr<l1 >

ot 0x?’ Osesl 120,
with initial conditions u(z,0) = ug(x) for ¢t = 0 and Dirichlet boundary conditions u(0,t) = ¢o(t) atz = 0
and u(1,t) = ¢1(¢t) at x = 1. By Taylor’s expansion

aué?t) — %[u(z,tJr k) —u(z,t)] + O(k), k= At,
2
% = # [u(@ — h,t) — 2u(z,t) + u(z + h,t)] + O(h?), h=Az,
so that, for the true solution, we obtain
u(x,t + k) = u(x, t) + % [u(z — h,t) — 2u(z,t) + u(z + h, t)] + O(k*+kh?). (2.1)

That motivates the numerical scheme for approximation v}, = u(z,, t,) on the rectangular mesh (z,,, t,) =
(mh,nk):

ult =y + p(upy, g — 2up, +ul ), m=1..M. (2.2)
Here h = M;H and p = h—kg = (AA—;)Q is the so-called Courant number. With u being fixed, we have k =

ph?, so that the local truncation error of the scheme is O(h*). Substituting whenever necessary initial
conditions u9, and boundary conditions u{ and u};,, we possess enough information to advance in

(22 from w" = [u, ..., up,] tow = [t up
Similarly to ODEs or Poisson equation, we say that the method is convergent if, for a fixed y, and for
every T' > 0, we have

}llirrb luyy, — WX, tn)| = 0 uniformly for (z,,t,) € [0,1]x[0,T].
—

In the present case, however, a method has an extra parameter 1, and it is entirely possible for a method
to converge for some choice of ;1 and diverge otherwise.

Theorem 2.2 If u < %, then method converges.

Proof. Let e}, := u)}, — u(mh, nk) be the error of approximation, and let e” = [e¥, ..., e};] with ||e"|| :=
max,, |e}y|. Convergence is equivalent to

lim max |e"||=0
h—01<n<T/k

for every constant 7" > 0. Subtracting (2.1) from (2.2), we obtain
et = et ulen g — 2 +ep ) + OO
= pep_y + (1 =2p)en + pepn, .y + O(h*).

Then
||en+1|| — H12X|€:;L+1| < (QLL + |1 — 2M|) ||e“|| + ch? = He”” + Ch47

by virtue of y1 < 1. Since ||€’|| = 0, induction yields
||e"||§cnh4g%h4:%h2—>o (h — 0) 0

Discussion 2.3 In practice we wish to choose i and k of comparable size, therefore . = k/h? is likely
to be large. Consequently, the restriction of the last theorem is disappointing: unless we are willing to
advance with tiny time step k, the method is of limited practical interest. The situation is similar
to stiff ODEs: like the Euler method, the scheme is simple, plausible, explicit, easy to execute and
analyse — but of very limited utility....

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www.damtp.cam.
ac.uk/user/hf323/M21-II-NA/demos/pde_stability/pde_stability.html and solve the
diffusion equation in the interval [0, 1] with method and = 0.51 > 1. Using (as preset) 100 grid
points to discretise [0, 1] will then require the time steps to be 5.1 - 1075. The solution will evolve very
slowly, but wait long enough to see what happens!
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