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Numerical Analysis – Lecture 7
Technique 2.11 (Fourier analysis of stability) Let us now assume a recurrence of the form∑s

k=r aku
n+1
m+k =

∑s
k=r bku

n
m+k, n ∈ Z+, (2.5)

where m ranges over Z. (Within our framework of discretizing PDEs of evolution, this corresponds to
−∞ < x < ∞ in the undelying PDE and so there are no explicit boundary conditions, but the initial
condition must be square-integrable in (−∞,∞): this is known as a Cauchy problem.) The coefficients
ak and bk are independent of m,n, but typically depend upon µ. We investigate stability by Fourier
analysis. [Note that it doesn’t matter what is the underlying PDE: numerical stability is a feature of
algebraic recurrences, not of PDEs!]

Let v = (vm)m∈Z ∈ `2[Z]. Its Fourier transform is the function

v̂(θ) =
∑
m∈Z e−imθvm, −π ≤ θ ≤ π.

We equip sequences and functions with the norms

‖v‖ =
{∑
m∈Z
|vm|2

} 1
2 and ‖v̂‖∗ =

{
1
2π

∫ π

−π
|v̂(θ)|2dθ

} 1
2

.

Lemma 2.12 (Parseval’s identity) For any v ∈ `2[Z], we have ‖v‖ = ‖v̂‖∗.

Proof. By definition,

‖v̂‖2∗ =
1
2π

∫ π

−π

∣∣∣ ∑
m∈Z

e−imθvm

∣∣∣2dθ =
1
2π

∫ π

−π

∑
m∈Z

∑
k∈Z

vmv̄ke−i(m−k)θdθ

=
1
2π

∑
m∈Z

∑
k∈Z

vmv̄k

∫ π

−π
e−i(m−k)θdθ

(∗)
=
∑
m∈Z

∑
k∈Z

vmv̄kδm−k = ‖v‖2 ,

where equality (∗) is due to the fact that∫ π

−π
e−i`θdθ =

{
2π, ` = 0,

0, ` ∈ Z \ {0},
�

The implication of the lemma is that the Fourier transform is an isometry of the Euclidean norm. This
is an important reason underlying its many applications in mathematics and beyond.

Analysis 2.13 (Fourier analysis of stability) For θ ∈ [−π, π], let ûn(θ) =
∑
m∈Z e−imθunm be the Fourier

transform of the sequence un ∈ `2[Z]. We multiply the discretized equations (2.5) by e−imθ and sum up
for m ∈ Z. Thus, the left-hand side yields

∞∑
m=−∞

e−imθ
s∑

k=r

aku
n+1
m+k =

s∑
k=r

ak

∞∑
m=−∞

e−imθun+1
m+k

=

s∑
k=r

ak

∞∑
m=−∞

e−i(m−k)θun+1
m =

( s∑
k=r

akeikθ
)
ûn+1(θ).

Similarly manipulating the right-hand side, we deduce that

ûn+1(θ) = H(θ)ûn(θ) , where H(θ) =

∑s
k=r bkeikθ∑s
k=r akeikθ

. (2.6)

The function H is sometimes called the amplification factor of the recurrence (2.5)

Theorem 2.14 The method (2.5) is stable ⇔ |H(θ)| ≤ 1 for all θ ∈ [−π, π].
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Proof. The definition of stability is equivalent to the statement that there exists c > 0 such that ‖un‖ ≤ c
for all n ∈ Z+. [Because we are solving a Cauchy problem, equations are identical for all h = ∆x, and
this simplifies our analysis and eliminates a major difficulty: there is no need to insist explicitly that
‖un‖ remains uniformly bounded when h→ 0 ]. The Fourier transform being an isometry, stability is
thus equivalent to ‖ûn‖∗ ≤ c for all n ∈ Z+. Iterating (2.6), we obtain

ûn(θ) = [H(θ)]nû0(θ), |θ| ≤ π, n ∈ Z+. (2.7)

1) Assume first that |H(θ)| ≤ 1 for all |θ| ≤ π. Then, by (2.7),

|ûn(θ)| ≤ |û0(θ)| ⇒ ‖ûn‖2∗ =
1

2π

∫ π

−π
|ûn(θ)|2dθ ≤ 1

2π

∫ π

−π
|û0(θ)|2dθ = ‖û0‖2∗.

Hence stability.
2) Suppose, on the other hand, that there exists θ0 ∈ [−π, π] such that |H(θ0)| = 1 + 2ε > 1, say.

Since H is continuous, there exist −π ≤ θ1 < θ2 ≤ π such that |H(θ)| ≥ 1 + ε for all θ ∈ [θ1, θ2]. We set
η = θ2 − θ1 and choose as our initial condition the function (or the `2[Z]-sequence)

û0(θ) =

{ √
2π
η
, θ1 ≤ θ ≤ θ2,

0, otherwise,

Then

‖ûn‖2∗ = 1
2π

∫ π

−π
|H(θ)|2n|û0(θ)|2dθ = 1

2π

∫ θ2

θ1

|H(θ)|2n|û0(θ)|2dθ

≥ 1
2π

(1 + ε)
2n
∫ θ2

θ1

2π
η

dθ = (1 + ε)
2n →∞ (n→∞).

We deduce that the method is unstable. �

Example 2.15 Consider the Cauchy problem for the diffusion equation.

1) For the Euler method
un+1
m = unm + µ(unm−1 − 2unm + unm+1) ,

we obtain
H(θ) = 1 + µ

(
e−iθ − 2 + eiθ

)
= 1− 4µ sin2 θ

2
∈ [1− 4µ, 1] ,

thus the method is stable iff µ ≤ 1
2 .

2) For the backward Euler method

un+1
m − µ(un+1

m−1 − 2un+1
m + un+1

m+1) = unm ,

we have
H(θ) =

[
1− µ

(
e−iθ − 2 + eiθ

)]−1
=
[
1 + 4µ sin2 θ

2

]−1
∈ (0, 1] .

thus stability for all µ.

3) The Crank–Nicolson scheme

un+1
m − 1

2
µ(un+1

m−1 − 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1 − 2unm + unm+1),

results in

H(θ) =
1 + 1

2µ(e−iθ − 2 + eiθ)

1− 1
2µ(e−iθ − 2 + eiθ)

=
1− 2µ sin2 θ

2

1 + 2µ sin2 θ
2

∈ (−1, 1]

Hence stability for all µ > 0.
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