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Mathematical Tripos Part II: Michaelmas Term 2021

Numerical Analysis — Lecture 9

Problem 2.25 (The diffusion equation in two space dimensions) We are solving

%:v%, 0<z,y<l, t>0, (2.11)
where u = u(z,y,t), together with initial conditions at t = 0 and Dirichlet boundary conditions
at 99, where Q = [0,1]? x [0, 00). It is straightforward to generalize our derivation of numerical
algorithms, e.g. by semi-discretization (also known as the method of lines). Thus, let ug,(t) ~
u(Ch, mh,t), where h = Ar = Ay, and let uj’,, ~ um(nk) where k = At. The five-point formula
results in

up ,, = h_12(u271,m + U 1,m + Uom—1 + Utmt1 — AUm),

or in the matrix form
u = %A*u, w=(up,,) €RY, (2.12)

where A, is the block TST (Toeplitz Symmetric Tridiagonal) matrix of the five-point scheme:

H I —41
Ac= | D E= ] N
I H 1 -4
Thus, the Euler method yields
U = W+ PO 0+ U+ U1 U1 — A0, (213)

or in the matrix form
"t = Au”, A=1T+ pA,
where, as before, 1 = % = (AA—;)Q The local error is n = O(k*+kh?) = O(h*). To analyse stability,

we notice that A is symmetric, hence normal, and its eigenvalues are related to those of A, by the

rule
Aee(A) =1+ pg o (Ay) Prop. 1124 4u (sin2 WTkh + sin? WTM) .

Consequently,

sup p(A) = max{1, |1 — 8ul}, hence p<3i <&  stability.
h>0

Method 2.26 (Fourier analysis) Fourier analysis generalizes to two dimensions: of course, we
now need to extend the range of (z,y) in (2.11) from 0 < z,y < 1to z,y € R. A 2D Fourier

transform reads
a(97w) = E U@,meil(zaerw)
L,mEeZ

and all our results readily generalize. In particular, the Fourier transform is an isometry from
62 [ZQ} to Lg([—ﬂ', 71']2), ie.

/ T /
(3 twent?)” = = = (s [ [ 0.2 avas)",
0,meL - —m

and the method is stable iff | H (6, ¢)| < 1 for all 8, € [—m,w]. The proofs are an easy elaboration
on the one-dimensional theory. Insofar as the Euler method (2.13) is concerned,

HO,v)=1 +,u(e_i9 +elf f o7V 4 el¥ —4) =1 —4M(sin2 g + sin® %),

and we again deduce stability if and only if 4 < 1.
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Method 2.27 (Crank-Nicolson for 2D) Applying the trapezoidal rule to our semi-dicretization
(2.12) we obtain the two-dimensional Crank-Nicolson method:

(I = suA)u = (I + spA)u” (2.14)

in which we move from the n-th to the (n+1)-st level by solving the system of linear equations
Bu"t! = Cu", or u"™' = B~!Cu™. For stability, similarly to the one-dimensional case, the
eigenvalue analysis implies that A = B~!C is normal and shares the same eigenvectors with B
and C, hence

MC) _ 14 3uM(AY)
NB) ~ 1- Lun(A,)

and the method is stable for all i.. The same result can be obtained through the Fourier analysis.

AMA) = IAM(A)] < Tas A\(A,) <0

Implementing the Crank-Nicolson method requires solving the linear system Bu"*! = Cu"

at each step. The matrix B = I — % A, has a structure similar to that of A,, so we may apply
the fast Poisson solver seen in Lectures 3 and 4. The total computational cost per iteration is
O(M?1log M) fora M x M discretization grid.

Matlab demo: Download the Matlab GUI for Solving the Wave and Diffusion Equations in 2D
fromhttp://www.damtp.cam.ac.uk/user/hf323/M21-I11-NA/demos/pdes_2d/pdes_
2d.html|and solve the diffusion equation for different initial conditions. For the numerical
solution of the equation you can choose from the Euler method and the Crank-Nicolson scheme.
The GUI allows you to solve the wave equation as well. Compare the behaviour of solutions!
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