Mathematical Tripos Part II: Michaelmas Term 2021

Numerical Analysis – Lecture 9

Problem 2.25 (The diffusion equation in two space dimensions) We are solving

$$\frac{\partial u}{\partial t} = \nabla^2 u, \qquad 0 \le x, y \le 1, \quad t \ge 0,$$
(2.11)

where u = u(x, y, t), together with initial conditions at t = 0 and Dirichlet boundary conditions at $\partial\Omega$, where $\Omega = [0, 1]^2 \times [0, \infty)$. It is straightforward to generalize our derivation of numerical algorithms, e.g. by semi-discretization (also known as the method of lines). Thus, let $u_{\ell,m}(t) \approx$ $u(\ell h, mh, t)$, where $h = \Delta x = \Delta y$, and let $u_{\ell,m}^n \approx u_{\ell,m}(nk)$ where $k = \Delta t$. The five-point formula results in

$$u_{\ell,m}' = \frac{1}{h^2} (u_{\ell-1,m} + u_{\ell+1,m} + u_{\ell,m-1} + u_{\ell,m+1} - 4u_{\ell,m}),$$

or in the matrix form

$$\boldsymbol{u}' = \frac{1}{h^2} A_* \boldsymbol{u}, \qquad \boldsymbol{u} = (u_{\ell,m}) \in \mathbb{R}^N,$$
(2.12)

where A_* is the block TST (Toeplitz Symmetric Tridiagonal) matrix of the five-point scheme:

$$A_* = \begin{bmatrix} H & I \\ I & \ddots & \ddots \\ & \ddots & I \\ & I & H \end{bmatrix}, \quad H = \begin{bmatrix} -4 & 1 \\ 1 & \ddots & \ddots \\ & \ddots & 1 \\ & 1 & -4 \end{bmatrix}.$$

Thus, the Euler method yields

$$u_{\ell,m}^{n+1} = u_{\ell,m}^n + \mu(u_{\ell-1,m}^n + u_{\ell+1,m}^n + u_{\ell,m-1}^n + u_{\ell,m+1}^n - 4u_{\ell,m}^n),$$
(2.13)

or in the matrix form

$$\boldsymbol{u}^{n+1} = A\boldsymbol{u}^n, \qquad A = I + \mu A_*$$

where, as before, $\mu = \frac{k}{h^2} = \frac{\Delta t}{(\Delta x)^2}$. The local error is $\eta = \mathcal{O}(k^2 + kh^2) = \mathcal{O}(h^4)$. To analyse stability, we notice that *A* is symmetric, hence normal, and its eigenvalues are related to those of A_* by the rule

$$\lambda_{k,\ell}(A) = 1 + \mu \lambda_{k,\ell}(A_*) \stackrel{\text{Prop. 1.12}}{=} 1 - 4\mu \left(\sin^2 \frac{\pi kh}{2} + \sin^2 \frac{\pi \ell h}{2} \right) \,.$$

Consequently,

$$\sup_{h>0} \rho(A) = \max\{1, |1-8\mu|\}, \quad \text{ hence } \quad \mu \leq \frac{1}{4} \quad \Leftrightarrow \quad \text{stability}.$$

Method 2.26 (Fourier analysis) Fourier analysis generalizes to two dimensions: of course, we now need to extend the range of (x, y) in (2.11) from $0 \le x, y \le 1$ to $x, y \in \mathbb{R}$. A 2D Fourier transform reads

$$\widehat{u}(\theta,\psi) = \sum_{\ell,m\in\mathbb{Z}} u_{\ell,m} \mathrm{e}^{-\mathrm{i}(\ell\theta+m\psi)}$$

and all our results readily generalize. In particular, the Fourier transform is an isometry from $\ell_2[\mathbb{Z}^2]$ to $L_2([-\pi,\pi]^2)$, i.e.

$$\left(\sum_{\ell,m\in\mathbb{Z}}|u_{\ell,m}|^2\right)^{1/2}=:\|\boldsymbol{u}\|=\|\widehat{\boldsymbol{u}}\|_*:=\left(\frac{1}{4\pi^2}\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}|\widehat{\boldsymbol{u}}(\theta,\psi)|^2\,d\theta\,d\psi\right)^{1/2},$$

and the method is stable iff $|H(\theta, \psi)| \le 1$ for all $\theta, \psi \in [-\pi, \pi]$. The proofs are an easy elaboration on the one-dimensional theory. Insofar as the Euler method (2.13) is concerned,

$$H(\theta, \psi) = 1 + \mu \left(e^{-i\theta} + e^{i\theta} + e^{-i\psi} + e^{i\psi} - 4 \right) = 1 - 4\mu \left(\sin^2 \frac{\theta}{2} + \sin^2 \frac{\psi}{2} \right),$$

and we again deduce stability if and only if $\mu \leq \frac{1}{4}$.

Method 2.27 (Crank-Nicolson for 2D) Applying the trapezoidal rule to our semi-dicretization (2.12) we obtain the two-dimensional Crank-Nicolson method:

$$(I - \frac{1}{2}\mu A_*) \boldsymbol{u}^{n+1} = (I + \frac{1}{2}\mu A_*) \boldsymbol{u}^n, \qquad (2.14)$$

in which we move from the *n*-th to the (n+1)-st level by solving the system of linear equations $Bu^{n+1} = Cu^n$, or $u^{n+1} = B^{-1}Cu^n$. For stability, similarly to the one-dimensional case, the eigenvalue analysis implies that $A = B^{-1}C$ is normal and shares the same eigenvectors with B and C, hence

$$\lambda(A) = \frac{\lambda(C)}{\lambda(B)} = \frac{1 + \frac{1}{2}\mu\lambda(A_*)}{1 - \frac{1}{2}\mu\lambda(A_*)} \quad \Rightarrow \quad |\lambda(A)| < 1 \text{ as } \lambda(A_*) < 0$$

and the method is stable for all μ . The same result can be obtained through the Fourier analysis.

Implementing the Crank-Nicolson method requires solving the linear system $Bu^{n+1} = Cu^n$ at each step. The matrix $B = I - \frac{1}{2}\mu A_*$ has a structure similar to that of A_* , so we may apply the fast Poisson solver seen in Lectures 3 and 4. The total computational cost per iteration is $\mathcal{O}(M^2 \log M)$ for a $M \times M$ discretization grid.

Matlab demo: Download the Matlab GUI for *Solving the Wave and Diffusion Equations in 2D* from http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html and solve the diffusion equation (2.11) for different initial conditions. For the numerical solution of the equation you can choose from the Euler method and the Crank-Nicolson scheme. The GUI allows you to solve the wave equation as well. Compare the behaviour of solutions!