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Numerical Analysis — Lecture 10

Linear systems of ODEs In all the examples of semi-discretization we have seen so far, we
always reach a linear system of ODE of the form:

u' = Au, u(0) = uo. (2.17)
The solution of this linear system of ODE is given by
u(t) = ety (2.18)

where the matrix exponential function is defined by e® := Y77 %B’“ . It is easily verified that
det4 /dt = Aet4, therefore (2.18) is indeed a solution of (2.17).

If A can be diagonalized A = VDV !, then e!4 = Ve!PV ~! where e'? is the diagonal matrix
consisting diag (e!Pi¢). As such one can compute the solution of (2.17) exactly. However comput-
ing an eigenvalue decomposition can be costly, and so one would like to consider more efficient
methods.

Observe that one-step methods for solving (2.17) are approximating a matrix exponential. In-
deed, with & = At, we have:

Euler: u" ™t = (I +kA)u", e* =1+ 2+ 0(2?);

Implicit Euler: u"t = (I — kA)~tu, e =(1—2)"1 4+ 0(2?);
. n -1 n . 1+1z

Trapezoidal Rule: w"™! = (I — JkA) (I + $kA)u", € = 17; + O(23).

In practice the matrix A is very sparse, and this can be exploited when solving linear systems
e.g., for the implicit Euler or Trapezoidal Rule.

Splitting In many cases, the matrix A is naturally expressed as a sum of two matrices, A = B +
C. For example, when discretizing the diffusion equation in 2D with zero boundary conditions,

we have A = L (A, + A,) where 4, € RM**M* corresponds to the 3-point discretization of 2,

and A, € RM**M* corresponds to the 3-point discretization of 8‘9—;2. In matrix notations, if the
grid points are ordered by columns, then we have:

—2I' 1 Il -21
A= | T CAy=| G| a=| Tl | erRMM 19)
I -2] G 1 —2

When the matrices B and C' commute, we can use the following fact about the matrix expo-
nential.

Proposition 2.31 If B and C commute, then B¢ = eBeC.

Proof. We have

eB+C*§:I{1ﬂB+C’ Z . Z <)BZC’J§:;'BCJe e¢
k=0 k=0 " i+j=k i,j=0

where in the second step we used the fact that B and C' commute.

Ata,

AtA _ o503 s Ay

The matrices A, and A, in (2.19) happen to commute (easy to check), and so e “eh?
This means that the solution of the semi-discretized diffusion equation in 2D, with zero boundary
conditions, satisfies

u" Tl = et AvehtAugyn, (2.20)
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Split Crank-Nicolson: In the split Crank-Nicolson scheme, we approximate each exponential
map in (2.20) by the rational function r(z) = (1 + z/2)(1 — 2/2) !, which leads to

u" = (1 4+ 5A) = 5A) T+ 5A)( - 5A4,) ™ (221)

Note that computing u" /2 = (I + £A,)(I — §A,) 'u" can be done efficiently in O(M?) time
as A, is block-diagonal, and the matrices G are tridiagonal (each tridiagonal solve requires O(M)
time, and we have M of these). Computing u" ! = (I + %Ai)(l— /2%430)_11;”“/2 can also be done
in O(M?) time, since A, is also block-diagonal provided we appropriately permute the rows and
columns so that the grid ordering is by rows instead of columns. This means that the update step
(2.21) of Split-Crank-Nicolson can be performed in time O(M?) and only requires tridiagonal
matrix solves (no FFT needed).

In general, however, the matrices B and C' in A = B 4 C do not have to commute, as in the
following example:

Example 2.32 The general diffusion equation with a diffusion coefficient a(x, y) > 0 is given by:

ou 0 ou 0 ou

together with initial conditions on [0, 1] and Dirichlet boundary conditions along 9[0, 1]>x [0, c0).
We replace each space derivative by central differences at midpoints,

dg(&) _ 9(&+3h) —g(& - 3h)

~

dé h ’

resulting in the ODE system

fm = 7% + + +
Upm = 2 |G- mUe—1,m T QoL nUetlm T Qg LUlm—1 T Qg gy LUl m+1 2.23)
— (@ g m + a1 a1+ aE,m+%)u£’m:|‘

Assuming zero boundary conditions, we have a system u’ = Au, and the matrix A can be split as
A= h%(A:,; + Ay). Here, A, and A, are again constructed from the contribution of discretizations
in the z- and y-directions respectively, namely A, includes all the a, 1 ,, terms, and A, consists
of the remaining a, .1 components.

In this case the matrices A, and A, do not necessarily commute. The next proposition tells us
that approximating e*(5+¢) by e*Pe!C results in an error of O(t?).

Proposition 2.33 For any matrices B, C,
etPe!C = o(BHC) 4 L2(BC — OB) + O(1). (2.24)

Proof. We Taylor-expand both expressions e'?e'” and e!(5+¢)

e'Pe!” = (I +tB +*B?/2+ O(t*))(I + tC + t*C?/2 + O(t%))
=I+tB+C)+ %(B2 +C? 4 2BC) 4+ O(t?)

and
2
' PTO) = [+ 4(B+C)+ 5 (B+C)? + O(t%)

:I+t(B+C)+%(B2+C2+BC+CB)+O(t3).

The result follows.

So, if r is a rational function such that r(z) = e* + O(z?), then

u" = r(pAy)r(pA,)u” (2.25)
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produces an error of O((At)?). The choice r(z) = (1 + 12)/(1 — 32) = € + O(z%) results in a
split Crank—Nicolson scheme, whose implementation reduces to a solution of tridiagonal algebraic
linear systems.

Strang splitting:  One can obtain better splitting approximations of e

not hard to prove that e2!Be!Ce2tB gives a O(t3) approximation of e!(B+C) je.,
p g pp

HB+C), For example it is

el(B+C) _ e%tBetCe%tB + O(tB).
Thus, as long as r(z) = e* + O(z?), the time-stepping formula
u't = r(guds) r(udy) r(znAs) u”

carries a local error of O((At)?).

Stability: ~ Consider the general diffusion equation with the splitting scheme (2.25). We ob-
serve that both A, and A, are symmetric, hence normal, therefore so are r(uA,) and r(pA,). Then
Euclidean /2-norm equals the spectral radius, therefore we have

[ < (e (uA) - (Al - "l = plr(nAs)] - plr(pAy)] - [u].

The function r(z) = (1 + %z)(l - %z)_1 satisfies |r(z)] < 1 for z € C with Rez < 0. By the

Gersgorin theorem, we see that the eigenvalues of A, and A, are nonpositive. Then it is true that
plr(nAs)], plr(pAy)] < 1. This proves [[u" || < |lu”| < --- < [[u|, hence stability.

Remark 2.34 (Splitting of inhomogeneous systems) Recall our goal, namely fast methods for
the two-dimensional diffusion equation. Our exposition so far has been contrived, because of
the assumption that the boundary conditions are zero. In general, the linear ODE system is of the
form

u = Au+b, u(0) = u®, (2.26)

where b originates in boundary conditions (and, possibly, in a forcing term f(z,y) in the original
PDE (2.22)). Note that our analysis should accommodate b = b(t), since boundary conditions
might vary in time! The exact solution of (2.26) is provided by the variation of constants formula

t
u(t) = e u(0) —|—/ et=9)4p(s) ds, t>0,
0

therefore .
n+1
w(tny1) = eAu(ty) +/ eltnt1=94p(5) ds .
t

n

The integral can be frequently evaluated explicitly, e.g. when b is a linear combination of polyno-
mial and exponential terms. For example, b(t) = b = const yields

U(tnyr) = e Au(t,) + A7 (24 1) b.

This, unfortunately, is not a helpful observation, since, even if we split the exponential et how
are we supposed to split A~' = (B + C)~1? The remedy is not to evaluate the integral explicitly

but, instead, to use quadrature. For example, the trapezoidal rule jok g(t)dr = %k[g(O) +g(k)] +
O(k3) gives
u(tnyr) ~ eAu(ty) + 3 At b(t,) + bltag1)],

with a local error of O((At)?). We can now replace exponentials with their splittings. For example,
Strang’s splitting results in

u™l = r(3ALB) r(ALC) r(3ALB) [u” + 2A"] + 2A"H

As before, everything reduces to (inexpensive) solution of tridiagonal systems!
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