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Numerical Analysis – Lecture 10

Linear systems of ODEs In all the examples of semi-discretization we have seen so far, we
always reach a linear system of ODE of the form:

u′ = Au, u(0) = u0. (2.17)

The solution of this linear system of ODE is given by

u(t) = etAu0 (2.18)

where the matrix exponential function is defined by eB :=
∑∞
k=0

1
k!
Bk. It is easily verified that

detA/dt = AetA, therefore (2.18) is indeed a solution of (2.17).
If A can be diagonalized A = V DV −1, then etA = V etDV −1 where etD is the diagonal matrix

consisting diag (etDii). As such one can compute the solution of (2.17) exactly. However comput-
ing an eigenvalue decomposition can be costly, and so one would like to consider more efficient
methods.

Observe that one-step methods for solving (2.17) are approximating a matrix exponential. In-
deed, with k = ∆t, we have:

Euler: un+1 = (I + kA)un, ez = 1 + z +O(z2);

Implicit Euler: un+1 = (I − kA)−1un, ez = (1− z)−1 +O(z2);

Trapezoidal Rule: un+1 =
(
I − 1

2kA
)−1 (

I + 1
2kA

)
un, ez =

1+ 1
2
z

1− 1
2
z

+O(z3).

In practice the matrix A is very sparse, and this can be exploited when solving linear systems
e.g., for the implicit Euler or Trapezoidal Rule.

Splitting In many cases, the matrix A is naturally expressed as a sum of two matrices, A = B +
C. For example, when discretizing the diffusion equation in 2D with zero boundary conditions,
we have A = 1

h2 (Ax + Ay) where Ax ∈ RM2×M2

corresponds to the 3-point discretization of ∂2

∂x2 ,
and Ay ∈ RM2×M2

corresponds to the 3-point discretization of ∂2

∂y2 . In matrix notations, if the
grid points are ordered by columns, then we have:

Ax =


−2I I

I
. . . . . .. . . . . . I

I −2I

 , Ay =

 GG . . .
G

 , G =


−2 1

1
. . . . . .. . . . . . 1

1 −2

 ∈ RM×M . (2.19)

When the matrices B and C commute, we can use the following fact about the matrix expo-
nential.

Proposition 2.31 If B and C commute, then eB+C = eBeC .

Proof. We have

eB+C =

∞∑
k=0

1

k!
(B + C)k =

∞∑
k=0

1

k!

∑
i+j=k

(
k

i

)
BiCj =

∞∑
i,j=0

1

i!j!
BiCj = eBeC

where in the second step we used the fact that B and C commute.
The matricesAx andAy in (2.19) happen to commute (easy to check), and so e∆tA = e

∆t
h2 Axe

∆t
h2 Ay .

This means that the solution of the semi-discretized diffusion equation in 2D, with zero boundary
conditions, satisfies

un+1 = eµAxeµAyun. (2.20)
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Split Crank-Nicolson: In the split Crank-Nicolson scheme, we approximate each exponential
map in (2.20) by the rational function r(z) = (1 + z/2)(1− z/2)−1, which leads to

un+1 = (I +
µ
2
Ax)(I − µ

2
Ax)−1(I +

µ
2
Ay)(I − µ

2
Ay)−1un. (2.21)

Note that computing un+1/2 = (I +
µ
2
Ay)(I − µ

2
Ay)−1un can be done efficiently in O(M2) time

as Ay is block-diagonal, and the matrices G are tridiagonal (each tridiagonal solve requiresO(M)
time, and we haveM of these). Computing un+1 = (I+

µ
2
Ax)(I− µ

2
Ax)−1un+1/2 can also be done

in O(M2) time, since Ax is also block-diagonal provided we appropriately permute the rows and
columns so that the grid ordering is by rows instead of columns. This means that the update step
(2.21) of Split-Crank-Nicolson can be performed in time O(M2) and only requires tridiagonal
matrix solves (no FFT needed).

In general, however, the matrices B and C in A = B + C do not have to commute, as in the
following example:

Example 2.32 The general diffusion equation with a diffusion coefficient a(x, y) > 0 is given by:

∂u

∂t
=

∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
, (2.22)

together with initial conditions on [0, 1]2 and Dirichlet boundary conditions along ∂[0, 1]2×[0,∞).
We replace each space derivative by central differences at midpoints,

dg(ξ)

dξ
≈
g(ξ + 1

2
h)− g(ξ − 1

2
h)

h
,

resulting in the ODE system

u′`,m = 1
h2

[
a`− 1

2 ,m
u`−1,m + a`+ 1

2 ,m
u`+1,m + a`,m− 1

2
u`,m−1 + a`,m+ 1

2
u`,m+1

−
(
a`− 1

2 ,m
+ a`+ 1

2 ,m
+ a`,m− 1

2
+ a`,m+ 1

2

)
u`,m

]
.

(2.23)

Assuming zero boundary conditions, we have a system u′ = Au, and the matrix A can be split as
A = 1

h2 (Ax +Ay). Here, Ax and Ay are again constructed from the contribution of discretizations
in the x- and y-directions respectively, namely Ax includes all the a`± 1

2 ,m
terms, and Ay consists

of the remaining a`,m± 1
2

components.

In this case the matrices Ax and Ay do not necessarily commute. The next proposition tells us
that approximating et(B+C) by etBetC results in an error of O(t2).

Proposition 2.33 For any matrices B,C,

etBetC = et(B+C) + 1
2
t2(BC − CB) +O(t3). (2.24)

Proof. We Taylor-expand both expressions etBetC and et(B+C):

etBetC = (I + tB + t2B2/2 +O(t3))(I + tC + t2C2/2 +O(t3))

= I + t(B + C) + t2

2
(B2 + C2 + 2BC) +O(t3)

and
et(B+C) = I + t(B + C) + t2

2
(B + C)2 +O(t3)

= I + t(B + C) + t2

2
(B2 + C2 +BC + CB) +O(t3).

The result follows.

So, if r is a rational function such that r(z) = ez +O(z2), then

un+1 = r(µAx)r(µAy)un (2.25)
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produces an error of O((∆t)2). The choice r(z) = (1 + 1
2z)/(1 −

1
2z) = ez + O(z3) results in a

split Crank–Nicolson scheme, whose implementation reduces to a solution of tridiagonal algebraic
linear systems.

Strang splitting: One can obtain better splitting approximations of et(B+C). For example it is
not hard to prove that e

1
2 tBetCe

1
2 tB gives a O(t3) approximation of et(B+C), i.e.,

et(B+C) = e
1
2 tBetCe

1
2 tB +O(t3).

Thus, as long as r(z) = ez +O(z3), the time-stepping formula

un+1 = r
(1
2
µAx

)
r
(
µAy

)
r
(1
2
µAx

)
un

carries a local error of O((∆t)3).
Stability: Consider the general diffusion equation with the splitting scheme (2.25). We ob-

serve that bothAx andAy are symmetric, hence normal, therefore so are r(µAx) and r(µAy). Then
Euclidean `2-norm equals the spectral radius, therefore we have

‖un+1‖ ≤ ‖r(µAx)‖ · ‖r(µAy)‖ · ‖un‖ = ρ[r(µAx)] · ρ[r(µAy)] · ‖un‖.

The function r(z) = (1 + 1
2
z)(1 − 1

2
z)−1 satisfies |r(z)| ≤ 1 for z ∈ C with Re z ≤ 0. By the

Gersgorin theorem, we see that the eigenvalues of Ax and Ay are nonpositive. Then it is true that
ρ[r(µAx)], ρ[r(µAy)] ≤ 1. This proves ‖un+1‖ ≤ ‖un‖ ≤ · · · ≤ ‖u0‖, hence stability.

Remark 2.34 (Splitting of inhomogeneous systems) Recall our goal, namely fast methods for
the two-dimensional diffusion equation. Our exposition so far has been contrived, because of
the assumption that the boundary conditions are zero. In general, the linear ODE system is of the
form

u′ = Au + b, u(0) = u0, (2.26)

where b originates in boundary conditions (and, possibly, in a forcing term f(x, y) in the original
PDE (2.22)). Note that our analysis should accommodate b = b(t), since boundary conditions
might vary in time! The exact solution of (2.26) is provided by the variation of constants formula

u(t) = etAu(0) +

∫ t

0

e(t−s)Ab(s) ds, t ≥ 0,

therefore

u(tn+1) = e∆tAu(tn) +

∫ tn+1

tn

e(tn+1−s)Ab(s) ds .

The integral can be frequently evaluated explicitly, e.g. when b is a linear combination of polyno-
mial and exponential terms. For example, b(t) ≡ b = const yields

u(tn+1) = e∆tAu(tn) +A−1
(
e∆tA − I

)
b.

This, unfortunately, is not a helpful observation, since, even if we split the exponential etA, how
are we supposed to split A−1 = (B + C)−1? The remedy is not to evaluate the integral explicitly
but, instead, to use quadrature. For example, the trapezoidal rule

∫ k
0
g(τ) dτ = 1

2
k[g(0) + g(k)] +

O(k3) gives
u(tn+1) ≈ e∆tAu(tn) + 1

2
∆t[e∆tAb(tn) + b(tn+1)],

with a local error ofO((∆t)3). We can now replace exponentials with their splittings. For example,
Strang’s splitting results in

un+1 = r
(1
2
∆tB

)
r
(
∆tC

)
r
(1
2
∆tB

)[
un + 1

2
∆tbn

]
+ 1

2
∆tbn+1.

As before, everything reduces to (inexpensive) solution of tridiagonal systems!
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