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Mathematical Tripos Part II: Michaelmas Term 2021

Numerical Analysis — Lecture 12

Method 3.8 (The algebra of Fourier expansions) Let A be the set of all functions f : [-1,1] — C,
which are analytic in [—1, 1], periodic with period 2, and that can be extended analytically into the complex
plane. Then A is a linear space, i.e., f,g € Aand o € Cthen f + g € Aand af € A. In particular,
with f and g expressed in its Fourier series, i.e.,

f(l‘): Z f-neirrnm’ g(m): Z @\neiﬂ-nm
we have - -
f@)+g@) = > (Ffat+G)e™, af(x)= Y afe™" (3.3)
and

f@)-g(z)= > ( > ﬁ_m§m> ™= N~ (fxg), e, (34)

— ~

where * denotes the convolution operator, hence (f-g),. = (f*9),. Moreover, if f € Athen f' € A

n
and
oo

flla)=ir Y n o™ (3.5)

n=—oo

Since {fn} decays faster than O(n~?) for any p € N, this provides that all derivatives of f have
rapidly convergent Fourier expansions.

Example 3.9 (Application to differential equations) Consider the two-point boundary value prob-
lem: y = y(x), —1 <z < 1, solves

Y +a(x)y +b(x)y = f(z), y(=1)=y(1), (3.6)

where a,b, f € A and we seek a periodic solution y € A for (3.6). Substituting y, a, b and f by their
Fourier series and using (3.3)-(3.5) we obtain an infinite dimensional system of linear equations
for the Fourier coefficients 4,,:

oo oo
—T° 0% 4 im > MAnemBm + Y bnembm = fn, nE L. (3.7)
m=—0oo m=—0o0

Since a,b, f € A, their Fourier coefficients decrease rapidly, like O(n™?) for every p € N. Hence,
we can truncate (3.7) into the N-dimensional system

N/2 N/2
_77277'23//\n 4o Z man—'rn?/jm + Z bn—mz//\m = f’ru n= _N/2 +1,..., N/2 (38)
m=—N/2+41 m=—N/2+1

Remark 3.10 The matrix of (3.8) is in general dense, but our theory predicts that fairly small
values of N, hence very small matrices, are sufficient for high accuracy. For instance: choosing
a(x) = f(z) = cosmz, b(z) = sin 2mx (which incidentally even leads to a sparse matrix) we get

N =16 ‘ error of size 1010

N =22 ‘ error of size 107! (which is already hitting the accuracy of computer arithmetic )
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Method 3.11 (Computation of Fourier coefficients (DFT)) We have to compute

1
fn= %/ fe ™ dt, ne€Z. (3.9)
-1

For this, suppose we wish to compute the integral on [—1, 1] of a function » € A by means of
the Riemann sums on the uniform partition

N/2

/1 h(t) dt ~ % S on (%‘“) . (3.10)

-1 k=—N/2+1

This is known as a rectangle rule. We want to know how good this approximation is. Let wy =
/N Then we have

9 N/2 2% 9 N/2 00 9 & N/2

. “h -~ 7 _2mink/N _ < N k

N E h (N) = N g E hne =N E hy, E W .
k=—N/2+1 k=—N/241n=—0o0 n=-—00 k=—N/2+1

Since wY = 1 we have

N/2

N-1
Z n —n(N/2— Z , N, n=0(modN),

o =y Wzr(rk:{o n # 0 (mod N)
k=—N/241 k=0 ’ ’

and we deduce that
N/2

2 2%k >
v, 2 H(5) =2 X
k=—N/241 r=—00

Hence, the error committed by the Riemann approximation is

N/2 1 o0
2 2k - -
ex(h) = Nk—%;%rlh (N> —[lh(t) dt = 27«;00 Ay — 2ho
e A ~
= 22 (th + h—N'r) .
r=1

Since h € A, its Fourier coefficients decay at spectral rate, namely Iy = O((Nr)~?), and hence
the error of the Riemann sums approximation (3.10) decays spectrally as a function of N,

en(h)=0O(N7?) V¥peN.

Going back to the computation of the Fourier coefficients (3.9), we see that we may compute

the integral of h(z) = 3f(z)e”"™"* by means of the Riemann sums, and this gives a spectral

method for calculating the Fourier coefficients of f:

N/2

- 1 2k
fn:;jﬁ Z f(N) w&”’“, n=-N/2+1,...,N/2. (3.11)
k=—N/2+1

Remark 3.12 One can recognise that formula (3.11) is the discrete Fourier transform (DFT) of the

sequence (y;) = (f(2)), see previous definition, hence not only have we a spectral rate of con-

vergence, but also a fast algorithm (FFT) of computing the Fourier coefficients.
Problem 3.13 (The Poisson equation) We consider the Poisson equation

Viu=f, —-1<zy<l, (3.12)
where f is analytic and obeys the periodic boundary conditions

f(_lvy):f(lay)v -1<y <1, f(xa_l):f(a:?l)’ -1<z <1,
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Moreover, we add to (3.12) the following periodic boundary conditions

uw(-1,y) =u(l,y), u.(-1l,y)=u.(l,y), —-1<y<1

u(e, —1) = u(z, 1), uy(z,—1) = uy(z,1), —-1<z<1. (3.13)

With these boundary conditions alone, a solution of (3.12) is only defined up to an additive con-
stant. Hence, we add a normalisation condition to fix the constant:

/1 /1 u(z,y) dx dy = 0. (3.14)
—1J-1

We have the spectrally convergent Fourier expansion

IE D DA

k,l=—oc0

and seek the Fourier expansion of u

oo
u(ac, y) _ Z aklei‘n’(szrZy)'

k4=—o00
Since
1,1 o0 11
0= / / u(z,y)dedy = Z ﬂkvg‘/ / e ket ty) g dy = 1,0,
—1J-1 . -1/
and -
Viu(z,y) = -2 Z (k* + Ez)ﬂk,gem(kxﬁy),
k4=—o00
together with (3.12), we have
I 1 ~
Uk g = —mfk,b k.l €Z, (kL) #(0,0)

17070 =0.

Remark 3.14 Applying a spectral method to the Poisson equation is not representative for its
application to other PDEs. The reason is the special structure of the Poisson equation. In fact,
br.e = kT T) are the eigenfunctions of the Laplace operator with

V2 = —m (k> + )b e,
and they obey periodic boundary conditions.

Problem 3.15 (General second-order linear elliptic PDE) We consider the more general second-
order linear elliptic PDE
VT(GVU):JC7 _1Sx7yé]~7

with a(z,y) > 0, and a and f periodic. We again impose the periodic boundary conditions (3.13)
and the normalisation condition (3.14). We rewrite

V' (aVu) = %(aux) + (%(auy) =1,

and use the Fourier expansions

~

g(m7y) = Z ./g\k,€¢k,€(x7y)a h(CE?y) = Z hm,n¢m,n(x7y)7

kLEL m,nez
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together with the bivariate versions of (3.4)-(3.5)

(g : h)k,g = Z @cfm,efnhm}m (g:z:)k’g =imk ./q\k,é s (gy)k,g = iﬁé/g\k’g ,
m,neZ
(h’i)mn = imm h’m,n ’ (hy)m,,n =mn hm,n .
This gives

12 3" ST (B 00) Gl G (2,9) = Y Fredre(@,y).

k€L mn€EL k,EZ

In the next steps, we truncate the expansions to —N/2 +1 < k,¢,m,n < N/2 and impose the
normalisation condition @y o = 0. This results in a system of N? — 1 linear algebraic equations in
the unknowns %y, ,,, where m,n = —N/2 + 1...N/2, and (m,n) # (0,0):

N/2
~ ~ 1 -

Z (km +4n) Gp—m 0—n Umn = ——5 fre, k,0=—-N/2+1..N/2.

m,n=—N/2+1

Discussion 3.16 (Analyticity and periodicity) The fast convergence of spectral methods rests on
two properties of the underlying problem: analyticity and periodicity. If one is not satisfied the
rate of convergence in general drops to polynomial. However, to a certain extent, we can relax
these two assumptions while still retaining the substantive advantages of Fourier expansions.

o Relaxing analyticity: In general, the speed of convergence of the truncated Fourier series of
a function f depends on the smoothness of the function. In fact, the smoother the function
the faster the truncated series converges, i.e., for f € C?(—1, 1) we receive an O(N ~P) order
of convergence.

Spectral convergence can be recovered, once analyticity is replaced by the requirement that
f € C®(~1,1), ie., fU(x) exists for all z € (—1,1) and m = 0,1,2,.... Consider, for
instance, f(z) = e */(1=*"). Then, f € C*(—1,1) but cannot be extended analytically
because of essential singularities at 1. Nevertheless, one can show that \fn| ~ Oe~"),
where ¢ > 0 and a =~ 0.44. While this is slower than exponential convergence in the analytic
case (cf. Remark 3.7), it is still faster than O(n~") for any integer m and hence, we have
spectral convergence.

o Relaxing periodicity: Disappointingly, periodicity is necessary for spectral convergence. Once
this condition is dropped, we are back to the setting of Theorem 3.3, i.e., Fourier series
converge as O(N ') unless f(—1) = f(1). One way around this is to change our set of basis
functions, e.g., to Chebyshev polynomials.
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