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Method 3.23 (The spectral method for evolutionary PDEs) We consider the problem

w = Lu(z,t), ze[-1,1], t>0, (3.20)
U(JZ,O) = g(.l?), HAIS [_15 1]a

with appropriate boundary conditions on {—1,1} x R} and where L is a linear operator (act-
ing on z), e.g., a differential operator. We want to solve this problem by the method of lines
(semi-discretization), using a spectral method for the approximation of u and its derivatives in
the spatial variable z. Then, in a general spectral method, we seek solutions uy (x, t) with

UN(aj? t) = Z Cn(t) (,OH(QT), (3.21)

#{n}=N

where ¢, (t) are expansion coefficients and ¢,, are basis functions chosen according to the specific
structure of (3.20). For example, we may take

1) the Fourier expansion with ¢, (t) = U, (t), ¢n(x) = €™ for periodic boundary conditions,

2) a polynomial expansion such as the Chebyshev expansion with ¢, (t) = i, (t), pn(x) = Ty (z)
for other boundary conditions.

The spectral approximation in space results into a N x IV system of ODEs for the expan-
sion coefficients {c, (¢)}:

c = Be, (3.22)

where B € RV*YN ‘and ¢ = {c,(t)} € RY. We can solve it with standard ODE solvers (Euler,
Crank-Nikolson, etc.) which as we have seen are approximations to the matrix exponent in the
exact solution c(t) = e'B¢(0).

Example 3.24 (The diffusion equation) Consider the diffusion equation for a function v = u(z, t),

{ Up = Uz, (z,1) € [-11] xRy, (3.23)

U(.’L‘,O):g(.’b), HAS [_17”'

with the periodic boundary conditions u(—1,t) = u(1,t), uy(—1,t) = u,(1,t), and standard nor-
malisation [ i1 u(z,t) dr = 0, both imposed for all values ¢ > 0.
For each t, we approximate u(z,t) by its N-th order partial Fourier sum in z,

u(a,t) muy(z,t) = D An(t)e™*,  Ty:={-N/2+1,..,N/2}.

nel'y
Then, from (3.23), we see that each coefficient u,, fulfills the ODE

al(t) = —m*nu,(t). nely (3.24)
Its exact solution is u,(t) = et G, for n # 0 and we set ug(¢t) = 0 due to the normalisation
condition, so that
2, 2 .
UN($,t) _ Z ?]\n e~ tez‘n'mv7
nel'y

which is the exact solution truncated to N terms.

Here, we were able to find the exact solution without solving ODE numerically due to the
special structure of the Laplacian. However, for more general PDE we will need a numerical
method, and thus the issue of stability arises, so we consider this issue on that simplified example.
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Analysis 3.25 (Stability analysis) The system (3.24) has the form
u' = Bu, B =diag{-7°n?}, nely,

and we note that (a) all the eigenvalues of B are negative, and that (b) they consist of the eigen-
N2
Ny2,

values A2 of the second order differentiation operator, with max |)\§L2)| = (3

If we approximate this system with the Euler method:
@t = I+ B, 1= A

then we see that, for stability condition ||I+7B|| < 1, we need to scale teh time step 7 = At ~ N~2.

Note that, for the Crank-Nikolson scheme, since the spectrum of B is negative, we get stability
for any time step 7 > 0.

For general linear operator £ in with constant coefficients, the matix B is again diagonal
(hence normal), and provided that it spectrum is negative, for stability we must scale the time
step 7 ~ N~™, where m is the maximal order of differentiation.

The scaling 7 ~ N2 may seem similar to the scaling k& ~ h? in difference methods which
we viewed as a disadvantage, however in spectral methods we can take NN, the order of partial
Fourier or Chebyshev sums to achieve a good appoximation, rather small. (We may still need to
choose 7 small enough to get a desired accuracy.)

Example 3.26 (The diffusion equation with non-constant coefficient) We want to solve the dif-
fusion equation with a non-constant coefficient a(x) > 0 for a function u = u(z, t)

{ up = (a(T)ug )z, (x,t) € [-1,1] x Ry,

(3.25)
u(z,0) = g(z), xe[-1,1],

with boundary and normalization conditions as before. Approximating u by its partial Fourier
sum results in the following system of ODEs for the coefficients 1,

U,(t) == > mnlp_min(t), nely.
mel'n
For the discretization in time we may apply the Euler method, this gives
Wt =af —ra? > mnan-may,, T=At,
mel'n

or in the vector form
a"t = (I +7B)a",

where B = (b, ,) = (—7*mn @, ). For stability of Euler method, we again need || + 7B|| < 1,
but analysis here is less straightforward.

Matlab demo: See the online documentation Using Chebyshev Spectral Methods at http://www.
damtp.cam.ac.uk/user/hf323/M21-I1I1-NA/demos/chebyshev/chebyshev.html for a
simple example of how boundary conditions can be installed.
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