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Mathematical Tripos Part II: Michaelmas Term 2021

Numerical Analysis – Lecture 17
Method 4.17 (Multigrid methods) The speed of convergence of some iterative methods (Jacobi with
relaxation, Gauss–Seidel, etc.) can be increased drastically when the linear system originates in the
discretization of PDEs, using multigrid methods. Here we look at the system Au = b originating from
the 3-point formula for the Poisson equation on an m-grid Ωh = {ih : i ∈ (0,m)}, h = 1/(m + 1),
being solved by the weighted Jacobi iteration.

Recall that the matrix A in this case is given by

A =


2 −1
−1 2 −1

. . .
−1 2 −1

−1 2

 ∈ Rm×m.

The diagonal part of A is D = 2I . Thus the weighted Jacobi iterations takes the form:

u(ν+1) = Hωu
(ν) + (ω/2)b

where H = I −D−1A = I − 1
2
A, and Hω = ωH + (1 − ω)I = I − ω

2
A. The error decay is expressed

in terms of the iteration matrix H :
e(ν) = Hν

ωe
(0).

We know from the results of Lecture 2 that the eigenvectors and the eigenvalues of Hω are

wk =
[
sin i kπ

m+1

]
i=1,...,m

, λk(ω) = 1− 2ω sin2 kπ
2(m+1)

(k = 1, . . . ,m).

Consider the choice ω = 1/2; then the eigenvalues of Hω are λk = 1− sin2 kπ
2(m+1)

= cos2 kπ
2(m+1)

.
With this choice, the eigenvalues are all positive and decreasing with k. In particular ρ(H) = λ1 =

cos2 π
2(m+1) ≈ 1− π2

4m2 < 1, guaranteeing convergence, although a very slow one! However, expand-
ing the error with respect to the (orthogonal) eigenvectors we obtain

e(ν) =

m∑
k=1

a
(ν)
k wk, e(ν) = Hν

ωe
(0) ⇒ |a(ν)k | = |λk|

ν |a(0)k | ,

i.e. the components of e(ν) (with respect to the basis of eigenvectors) decay at a different rate for
different frequencies k = 1, . . . ,m. More precisely, the high frequencies, where k is close to m, will
decay faster than the low frequencies, where k is closer to 1. Let us say that k ∈ (0,m + 1) = (0, 1

h
)

is high frequency (HF) wrt grid Ωh if kh ≥ 1/2 (i.e., m+1
2
≤ k ≤ m). Then the decay rate for the high

frequency components of the error e is at least:

µ∗ = |λ(m+1)/2| = 1− sin2(π/4) = 1/2.

Therefore, for the coefficients at the HF components of e(ν) we obtain

|a(ν)k | ≤ |µ∗|ν |a(0)k | =
(

1
2

)ν
|a(0)k | � |a

(0)
k | ,

i.e. the Jacobi method converges fast for high frequencies.
The main observation of the multigrid is to note that the low frequencies k ∈ ( 1

4h
, 1

2h
) with respect

to the grid Ωh become high frequencies for the coarser grid Ω2h with step 2h; indeed for such k we
have k(2h) ≥ 1/2.

The idea of the multigrid method then is that, although the global error may decrease slowly
by iteration, its components with high frequencies relative to Ωh are suppressed (or smoothed) very
quickly, and that dealing with the remaining components (with low frequencies relative to Ωh) we
can move to the coarse grid Ω2h, where these components (in part) would be of high frequencies,
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and thus they can be smoothed in a similar way. Therefore, we cover the domain [0, 1] by a range of
nested grids, of increasing coarseness, say,

Ωh ⊂ Ω2h ⊂ Ω4h ⊂ · · · ⊂ Ω2jh .

At every Ωhi
, the iterations (Jacobi, or Gauss-Seidel) remove the high frequencies relative to this grid,

and we move to Ω2hi
. On the coarsest grid, where the number of variables is small, we can afford to

solve the equations with a direct method, by Cholesky, say.
A typical multigrid method can be summarized as follows. We call Ah the discretized Poisson

matrix for grid size h.

1. Presmoothing: Perform a small number ν (typically 2,3) of Jacobi iterations on Ahuh = bh.

2. Let rh = bh −Ahuh be the residual.

3. Let R2h
h : Rm → Rm/2 be a restriction operator that restricts vectors on the fine grid Ωh to vectors

on the coarse grid Ω2h; and let Ih2h be an interpolation operator that interpolates vectors on the
coarse grid Ω2h to vectors on the fine grid Ωh.

4. Recurse: Use the multigrid method to solve A2hδ
2h = r2h, where r2h = R2h

h r
h (if the size of

this linear system is small, use a direct solver instead of recursing)

5. Let uh = uh + Ih2hδ
2h

6. Postsmoothing: apply a few Jacobi iterations (typically 2,3) starting from uh on Ahuh = bh

To make the algorithm above complete, one needs to define the restriction and the interpolation
operators. A common choice for the interpolation operator is linear interpolation, i.e.,

(Ih2hv)2i = vi and (Ih2hv)2i+1 = (vi + vi+1)/2

for i ∈ [0, 1
2h

). A natural choice for the restriction operator is the canonical injection (R2h
h v)i = v2i;

another more common choice is to take R2h
h to be an averaging operator

(R2h
h v)i =

1

4
(v2i−1 + 2v2i + v2i+1)

for i ∈ (0, 1
2h

). (The latter corresponds, up to scaling, to the transpose of the linear interpolation
operator above.)

If we follow the recursive procedure outlined above, then we see that the algorithm starts at the
finest grid, travels to the coarsest (where we apply a direct solver), and back to the finest:

Ωh r r
@@Ω2h r r

@@Ω4h r r��r r��r r
For this reason, the algorithm above describes what is known as a V-cycle.

Matlab demo: Download the Matlab GUI for Multigrid Methods from https://www.damtp.cam.
ac.uk/user/hf323/M21-II-NA/demos/multigrid/multigrid.html and see the tremendous
effect of multigrid (in comparison with Jacobi and Gauss-Seidel) for solving the Poisson equation
with a forcing term f that possesses multiple frequencies.
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