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Numerical Analysis — Lecture 19

Conjugate gradient method The conjugate gradient method is the method of conjugate direc-
tions (Theorem 4.23 from previous lecture) where the directions d® are chosen so that they A-
orthogonalize the residuals, i.e., the d”) satisfy

span(d® ... d* V) = span(r@, ... r*-D) 4.8)

for every iteration k, in addition to being pairwise A-orthogonal. This can be achieved by setting
d®) = 7 and applying the Gram-Schmidt step at each iteration

k (7)
gD — et _ Z <7"(:)1)—7(4)>Ad(i)_ 4.9)
(d'",d\") 4

Because of our particular choice of d*’, the equation above simplifies dramatically and the terms
i < k — 1 in the summation above happen to be zero! This is the key point of the CG method.

Let’s prove this. Recall that the iterates are defined by 2**1) = 2*) 4+ ,,d™ so that the residuals
satisfy r(k+1) = p(k) arAd™  1tis easy then to see by induction, using the property (4.8) that

span{d(i’)}fz_o1 = sp:eul{7'(i)}f=_01 = span{r(o), Ar©@ . ,Akflr(o)} =: Ki(A, r(o))7

where K,,(A,v) = span{A‘v}7 ;! is the m’th Krylov subspace of A wrt v. The result of Theorem
4.23 tells us that #(*+1) is orthogonal to K1 (A, 7). Now for i < k, we have d”) € K (A,r)
and so Ad") € Ky y1(A, 7). This implies that (r*+1), Ad™) = 0 for i < k, and shows that the
terms i < k in Equation (4.9) are equal to zero.

The conjugate gradient algorithm can thus be summarized in the following: Set d¥ = () =
b— Az and iterate, for k& > 0:

<r(k)7 d(k)>
(d(k), Ad(k)>

<7,(k+1)’ Ad(k)>
<d(k), Ad(k)>

w(k""l) = m(k) J'_ O[kd(k) Q=
(4.10)
dF+D (kD) + Bkd(k) Bp = —

where r(*) stands for b — Az(*). We can summarize the properties of the Conjugate Gradient
Method in the following theorem.

Theorem 4.26 (Properties of CGM) For every m > 0, the conjugate gradient method has the following
properties.

(1) The linear space spanned by the residuals {r)} is the same as the linear space spanned by the
conjugate directions {dV} and it coincides with the space spanned by { Air(©)}:

span{r D} = span{d?}", = span{Air O} .

(2) The residuals satisfy the orthogonality conditions: (r(™) r®) = (p(m) dDy =0 for i <m.
(3) The directions are conjugate (A-orthogonal): (d™,d) , = (d™, Ad™) = 0 for i <m.

Using these properties we can simplify the expressions for o, and J;.. Indeed, using the second
equation in (4.10), and the fact that #*) 1 d*~"), we have

(r®), d®y = (r®) p*)y = |00 2 (4.11)
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which shows that
B
= a0 "

Also, we can write:
<r(k+1),Ad(k)> (@) <T(k+1)7r(k+1) _T(k)> ®) ||T(k+1)||2 () ||r(k+1)H2

— — = — = == > 0.
O (@™, Ad™®) (dW) pOt1) —p®))y (@) )y ]2

where we used in (a) the fact that Ad*) is a multiple of 7**+1) — (), and in (b) orthogonality of
1 to both r*) d®) (Theorem 4.26(2)), and in (c) we used (4.11).
The complete conjugate gradient method can thus be written as follows:

Algorithm 4.27 (Standard form of the conjugate gradient method) —
1) Setk =0,z =0,7® =b,and d¥ = »©;
(2) Calculate the matrix-vector product v*) = Ad®) and oy, = ||r®)|2/(d®,v®) > 0;
(3) Apply the formulae z*+t1) = 2® + ;. d® and r*++1) = r*) — o 0*);
(4) Stop if [|»*+1V)|| is acceptably small;
() Setd* V) = p(:t1) 1 g d®) where 8, = ||r*+tD |2/ ||lr®) |2 > 0;
(6) Increase k — k + 1 and go back to (2).

The total work is dominated by the number of iterations, multiplied by the time it takes to

compute v*) = Ad®), Thus the conjugate gradient algorithm is highly suitable when most of the
elements of A are zero, i.e. when A is sparse.

Finite termination We have already seen that the method of conjugate directions (Theorem 4.23
in previous lecture) terminates after at most n steps. We restate this result in the special case of
the conjugate gradient method.

Corollary 4.28 (A termination property) If the conjugate gradient method is applied in exact arith-
metic, then, for any =(®) € R™, termination occurs after at most n iterations. More precisely, termination
occurs after at most s iterations, where s = dim span{ A'rq}}"=;' (which can be smaller than n).

Proof. Assertion (2) of Theorem 4.26 states that residuals (r(*));>, form a sequence of mutually

orthogonal vectors in R", therefore at most n of them can be nonzero. Since they also belong to

the space span{A‘ry}!'", their number is bounded by the dimension of that space. O
We can bound the dimension of the Krylov subspace span{A’rq}!—; using the number of

distinct eigenvalues of A.

Theorem 4.29 (Number of iterations in CGM) Let A > 0, and let s be the number of its distinct

eigenvalues. Then, for any v,
dim K,,(A,v) <s Vm. (4.12)

Hence, for any A > 0, the number of iterations of the CGM for solving Az = b is bounded by the number
of distinct eigenvalues of A.

Proof. Inequality (4.12) is true not just for positive definite A > 0, but for any A with n linearly
independent eigenvectors (u;). Indeed, in that case one can expand v = Y " | a;u;, and then
group together eigenvectors with the same eigenvalues: for each A\, we set w, = Y [**, a;, u;, if
1411,7;,C = )\uu“ Then

V= Zi:l Wy, Cy € {07 1} 5

hence Alv = Y7 _ ¢, \ow,, thus for any m we get K,,(A4,v) C span{w;,ws, ..., w}, and that
proves (4.12). By Corollary 4.28, the number of iteration in CGM is bounded by dim K., (4, r(?)),
hence the final conclusion. O

Remark 4.30 Theorem 4.29 shows that, unlike other iterative schemes, the conjugate gradient
method is both iterative and direct: each iteration produces a reasonable approximation to the
exact solution, and the exact solution itself will be recovered after n iterations at most.
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Convergence One can prove a more quantitative version of Theorem (4.29).

Theorem 4.31 Let A be symmetric positive definite. After k iterations of the conjugate gradient method,
the error e®) = x* — () satisfies

le™ 4 = min || Pe(A)e'”]||.
k

where the minimization is over all polynomials Py, of degree < k that satisfy Py (0) = 1.

Proof. We know from Lecture 18 (Equation (4.7) applied recursively) that e(*) is obtained from
e by projecting out (in the inner product (-,-)4) the components d'?,...,d*~"). This means
that

le®™ |4 = min [le®© — v]l4

where the minimization is over all v € span(d®, ..., d*~1)). For the conjugate gradient method,
this subspace is the same as span(r(®), ..., A¥=15(0) and since r(*) = Ae(®), this means that any

such v can be written as v = 2% | ¢; A%e®). Let P(t) = 1 — 32F_, ¢;t* we get the desired equality.

Remark 4.32 If A has s distinct eigenvalues Ay, ..., As > 0, then with Py(t) = [[;_, (1 — t/X;) we have
deg Py = s, P(0) = 1, and and P,(A) = 0. Thus this shows that the CG method terminates after s
iterations.
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