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Numerical Analysis — Lecture 20

Convergence of CG The following theorem gives an important characterization of the CG method.

Theorem 4.33 Let A be symmetric positive definite. After k iterations of the conjugate gradient method,
the error e®) = x* — () satisfies

1[4 = min || P(4)e ||
k

where the minimization is over all polynomials Py, of degree < k that satisfy Py (0) = 1.

Proof. We know from Lecture 18 (Equation (4.7) applied recursively) that e*) is obtained from
e by projecting out the components d?, ..., d*~Y (in the inner product (-,-)4). This means
that

le®™ a4 = min [le© —v]l4

where the minimization is over all v € span(d®, ..., d*~1)). For the conjugate gradient method,
this subspace is the same as span(r(?), ..., A¥=15(0) and since r(*) = Ae(®), this means that any

such v can be written as v = Y., ¢;A7e(®), ie, e® — v = P(A)e® with P(t) = 1 — 32 ¢t
is a degree k polynomial with P;(0) = 1. O
Remark 4.34 If A has s distinct eigenvalues Ay, ..., \s > 0, then with Py(t) = [[;_, (1 — t/\;) we have

deg Ps = s, P5(0) = 1, and Ps(A) = 0. Thus this shows that the CG method terminates after s iterations,
recovering the result of Theorem 4.29.

Corollary 4.35 Let A be symmetric positive definite, and assume that all its eigenvalues lie in [l, L] where
0 < I < L. Then after k iterations of the conjugate gradient method, the error e*) = x* — x¥) satisfies

(k) k[ (0) _ kj[,(0) _ VL=Vl
e ]]a < 2p"[[e™[la < 2(1 = /1/L)"[[e™] 4, =" <

Proof. First note that for any polynomial P, we have

1Pl < (| amax | 17O 1€
AEspec

where spec(A) is the set of eigenvalues of A (its spectrum). To see why, let wy,...,w, be an

orthogonal basis of eigenvectors of A such that e(®) = 3", w;. Since the w; are eigenvectors of 4,

they are also pairwise orthogonal wrt A-inner product, and so [ % = 3. |lw;||%. In addition

Pi(A)e® =3, Py(\i)w; and so

1P (A)e @)% = | ZPk dwilld =Y 1PN Pllwill %

%
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as desired.
We know that the eigenvalues of A are all in [I, L], so we consider the problem of finding the
polynomial P, of degree k, such that P, (0) = 1, and that minimizes the value

max [Pe(@)];
z€[l,L

This problem has a classical solution P, = 1}, where T} is the Chebyshev polynomial on the in-
terval [/, L], which is obtained by dilation and translation of the standard Chebyshev polynomial
Ty, given on the interval [—1, 1], namely

Pk(:c):Tk( = )/Tk (L”).
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This polynomial satisfies P, (0) = 1, and since |T}(t)| < 1forall ¢ € [—1, 1], we have

L+1
(1)
for all z € [I, L]. Using the inequality

Ty(t) > % (t +Ve - 1)k

k
valid for all |[¢t| > 1, one can show that | T} (1 +2n)| < (g;\‘g) , which gives the desired result. [
’/\\i“#"((ﬁ)) > 1 be its condition number. We

saw that the convergence rate of the steepest descent method is ~ (1 — ﬁ)k, whereas the CG

-1

| Pr(2)] < =[Tx (1+20) ", n=1/(L-1),

For a symmetric positive definite matrix A, let k(A) =

k
method achieves the better rate of (1 - 1(A)> .

K
Remark 4.36 The condition number defined above can be written as k(A) = ||A||2||A™1|2 where || - ||2 is
the operator norm of A. This quantity measures the sensitivity of the matrix inverse operation, in a relative
error sense. Let ¢p(A) = A~ be the matrix inverse operation, and consider a perturbation A = A + H.
The relative sensitivity is defined as:

||qb(f~1) — ¢(A)|2/llp(A)ll2  output relative error

|A— Ala/||All2 input relative error

One can show that for H small, this quantity is bounded above by k(A).

Preconditioning In Ax = b, we change variables, x = PT%, where P is a nonsingular n x n
matrix, and multiply both sides with P. Thus, instead of Az = b, we are solving the linear system

PAPTZ=Pb < Az =b. (4.11)

Note that symmetry and positive definiteness of A imply that A= PAPT is also symmetric and
positive definite since (Ay, y) = (PAPTy,y) = (APTy, PTy) > 0. Therefore, we can apply con-
jugate gradients to the new system. This results in the solution Z, hence x = PTz. This procedure
is called the preconditioned conjugate gradient method and the matrix P is called the preconditioner.

-~

The main idea of preconditioning is to pick P in (4.11) so that x(A) is much smaller than «(A),
thus accelerating convergence. Ideally, one would like to choose P so that PAPT = I, however
this amounts to inverting A! Instead, we look for an approximation .S of A that is easy to invert,
or Cholesky-factorize. If we let S = LL” this Cholesky factorization, and take P = L1, then
PAPT = L7YALT which is similar to S~ A4 ~ I. Possible choices of S include:

Example 4.37 1) The simplest choice of S is D = diag 4, then P = D~'/2 in (4.11).
2) Another possibility is to choose S as a band matrix with small bandwidth. For example,

solving the Poisson equation with the five-point formula, we may take S to be the tridiagonal
part of A.

Example 4.38 Consider the tridiagonal system Az = b, and let S be defined by:

2-1 1-1 1

-1 2. -1 2 11
A= S S = S .

-1 ST | R
-1 2 -1 2 -1 1

=LLT, with L=

The matrix S coincides with A except at the (1,1)-entry. This matrix S happens to have a simple
Cholesky factorization S = LLT. Using P = L~!, we note that PAPT has only two distinct
eigenvalues, and so the CG method converges in two iterations. To see why, note that A = S +
erel, so that

ST'A =1+ uel,

a rank-1 perturbation of the identity matrix, with all eigenvalues but one equal 1 (the remaining
one equal 1 + u4).

42



Matlab demo: Download the Matlab GUI for Preconditioning of Conjugate Gradient from https:
//www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/precond/precond.html. Run
the GUI to solve different systems of linear equations, trying different preconditioners P. You can
select from some preset preconditioners but can propose your own customised preconditioners
as well. What does preconditioning do to the spectrum of the system matrix?
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