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Numerical Analysis – Lecture 21

5 Eigenvalues and eigenvectors

We consider in this chapter the problem of computing eigenvalues and eigenvectors of matrices.
Let A be a real n×n matrix. The eigenvalue equation is Aw = λw, where λ is a scalar, which may
be complex in general, and w is a nonzero vector. If A is diagonalizable, then the eigenvectors
form a basis of Rn. If A is symmetric, we know that the eigenvalues are all real, and that the
eigenvectors form an orthonormal basis of Rn.

We start by describing algorithms to compute a single eigenvalue/eigenvector pair for A.

5.1 Power method

The iterative algorithms that will be studied for the calculation of eigenvalues and eigenvectors
are all closely related to the power method, which has the following basic form for generating a
single eigenvalue and eigenvector of A. We pick a nonzero vector x(0) in Rn. Then, for k =
0, 1, 2, . . ., we let x(k+1) be a nonzero multiple of Ax(k), so that ‖x(k+1)‖ = 1.

POWER ITERATION: for k = 0, 1, 2, . . .

• Set y = Ax(k)

• x(k+1) = y/‖y‖

The next theorem shows that the sequence x(k) converges to an eigenvector of A associated
with the largest eigenvalue in modulus.

Theorem 5.1 Let Awi = λiwi, where the eigenvalues of A satisfy |λ1| ≤ · · · ≤ |λn−1| < |λn| and the
eigenvectors are of unit length ‖wi‖=1. Assume x(0) =

∑n
i=1 ciwi with cn 6=0. Then ‖x(k) −±wn‖ =

O(ρk) as k →∞, where ρ = |λn−1/λn| < 1.
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Since ‖x(k)‖=‖wn‖=1, we conclude that x(k) = ±wn+O(ρk), where the sign is that of cnλkn and
the ratio ρ = |λn−1|

|λn| < 1 characterizes the rate of convergence.1 �
The Rayleigh quotient at a nonzero vector x is defined by

r(x) =
xTAx

xTx
.

If Ax = λx then clearly r(x) = λ. In general, r(x) = argminµ ‖Ax − µx‖22, since ‖Ax − µx‖22 =
µ2xTx − 2µxTAx + ‖Ax‖2, which is minimized precisely at µ = r(x). One can show, using the
same proof as the theorem above, that the sequence of Rayleigh quotients r(x(k)) converges to λn
at the rate O(ρk).

Discussion 5.2 (Deficiencies of the power method) The power method may perform adequately
if cn 6=0 and |λn−1| < |λn|, where we are using the notation of Theorem 5.1, but often it is unac-
ceptably slow. The difficulty of cn = 0 is that, theoretically, in this case the method should find

1The assumption that |λn−1| < |λn| implies that λn is real: indeed since our matrix A has real entries, all eigenvalues
come in complex conjugate pairs, so if ρ(A) was attained with a complex eigenvalue λn then λn 6= λn would also be an
eigenvalue and has the same modulus.
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an eigenvector wm with the largest m such that cm 6= 0, but practically computer rounding er-
rors can introduce a small nonzero component of wn into the sequence x(k), and then wn may be
found eventually, but one has to wait for the small component to grow. Moreover, |λn−1| = |λn|
is not uncommon when A is real and nonsymmetric, because the spectral radius of A may be
due to a complex conjugate pair of eigenvalues. Next, we will study the inverse iterations (with
shifts), because they can be highly useful, particularly in the more efficient methods for eigenvalue
calculations that will be considered later.

5.2 Inverse iteration

Inverse iteration is the power method applied to the matrix (A− sI)−1, for some shift s ∈ R. The
eigenvalues of (A−sI)−1 are equal to 1

λi−s where λi are the eigenvalues ofA, and the eigenvectors
are the same. Let λ be the eigenvalue of A closest to s, and let λ′ be the eigenvalue second-closest
to s, so that |λ− s| < |λ′− s|. Then, from the analysis of the power method, we know that inverse
iteration will converge to an eigenvector of λ with rate ρk, where ρ = |λ−s|

|λ′−s| < 1.

INVERSE ITERATION: for k = 0, 1, 2, . . .

• λ = r(x(k))

• Solve (A− sI)y = x(k) (in y, using e.g., LU decomposition)

• x(k+1) = y/‖y‖

The advantage of inverse iteration is the choice of the parameter s: if we have a good estimate
of the eigenvalue λ, then the iterations converge very fast.

Rayleigh quotient iteration In the algorithm above, the Rayleigh quotient r(x(k)) gives us an
estimate of the eigenvalue closest to s. In turn, we know that the convergence of inverse iteration
depends on how well the shift s approximates the eigenvalue. In Rayleigh quotient iteration, we
update the shift at each iteration by the Rayleigh quotient, namely:

RAYLEIGH QUOTIENT ITERATION: for k = 0, 1, 2, . . .

• sk = r(x(k))

• Solve (A− skI)y = x(k)

• x(k+1) = y/‖y‖

In practice, the convergence of Rayleigh quotient iteration is extremely fast.
Example: consider the matrix

A =


2 −1
−1 2

. . .
. . . . . . −1
−1 2


with n = 5, and the initial vector x(0) = (1, . . . , 1)/

√
5. We know that the eigenvalues of A are

equal to 4 sin2(`π/(2(n + 1))), ` = 1, . . . , n, and that the eigenvectors correspond to sinusoidal
vectors with frequencies ` = 1, . . . , n. The initial vector x(0) here is constant, so it makes sense
to think that the Rayley quotient iteration will converge to the eigenvalue corresponding to the
smallest frequency, i.e., ` = 1, which in this case is 4 sin2(π/12) ≈ 0.267949192431. After 3 itera-
tions of Rayleigh quotient iteration we obtain the approximation 0.267949192649 which is correct
up to 9 digits!
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