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Numerical Analysis — Lecture 22

5.1 Simultaneous iteration

We assume in this section that A € R™*" is a symmetric matrix, so that the eigenvectors asso-

ciated to different eigenvalues, are orthogonal. Let |[A;| > --- > |\,| be the eigenvalues of A,
and wy, ..., w, be eigenvectors. Consider the following algorithm, which generalizes the power
method.

SIMULTANEOUS ITERATION — Let X (9 € R"*P has orthonormal columns
Fork=0,1,2,...

e YV = AX(R)

o X*+DUR = qr(Y) (X *+1) has orthonormal columns, and R is upper triangular)

Revision 5.8 (QR factorization) Recall that the QR factorization of an x p matrix Y is Y = QQR where
Q € R™*P has orthonormal columns, and R € RP*P is upper triangular. Such a factorization can be
obtained by applying the Gram-Schmidt procedure on the columns of Y. Alternatively, it can be obtained
using Householder reflections, or Givens rotations, see Numerical Analysis IB.

The matrix X*) produced by the algorithm above is nothing but the “Q” matrix in a QR
factorization of A*X(©). This can be easily seen by induction: it is clearly true for k¥ = 0. Now
assume that A*X(©) = X®) R(*) where R%) is upper triangular. If we let Y = AX®*®) = X(+UR
(the latter being a QR factorization, as per the algorithm above), then A**1 X () = AX*) R(k) =
XE+HDRRF) = x (k+1) p(k+1) where R*+1) = RR() is upper triangular.

Relation with power method and inverse iteration It follows from the above, that the first
column of X® is given by X\¥) = Ak x(©) /| 4k x(9)||,, ie, it corresponds to the power method
starting from the vector X fo) (the first column of X (©)).

Assume p = n. In this case it turns out that, remarkably, the last column of X *), namely X,(Lk),

is the result of applying inverse iteration starting from the vector X O (the last column of X(©).
Indeed if we invert the identity A* X () = X ) R(*) we get (X(0)TA=F = (RF))=1(X )T [where
we used the fact that X ) are orthogonal matrices], and after transposing

A~k x(0) — X(k)(R(k))—T.

Note that (R*®))~7 is lower triangular. This means that the last column of A~*X(©) is a multiple of
the last column of X*), and so, by normalization, this means that

o ATXD
o A
A=+ X

n

This is precisely the result of applying inverse iteration (with shift s = 0) starting from X ) This
observation will be useful later when we introduce shifts in the QR iteration.

Convergence of simultaneous iteration The next theorem establishes convergence of the simul-
taneous iteration, and generalizes the statement for the power method. The theorem shows that

colspan(X (*)) converges to span(ws, ..., w,) at the rate (|]\,+1]/|\,|)¥, provided that the vectors
in colspan(X () all have a nonzero component on span(wi, . .., w,). To make the convergence
statement precise, let W = [w4]...|w,] € R"*P; and let W = [w,14]...|w,] which spans the

orthogonal complement of colspan(W). We will show that W7 X (*) — 0 at the rate (|\,11|/|\p|)".
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Theorem 5.9 Let A € R™*" be a symmetric matrix with eigenvalues ordered in decreasing magnitude
[A1] > -+ > |An|, and associated eigenvectors wy, . . ., w.,. Assume that

o [Apl > [Apia]
o X ¢ R™ P js such that WT X () € RP*P is invertible, where W = [wy] ... |w,] € R™*P.

Then [|[WTX® |y < | Aps1/Ap|" where W = [wyi1]. .. |wy], and ¢ > 0is a constant that depends on
X () and W, W. (Here || - || denotes the spectral norm.)

Proof. Let A = diag ()\1,...,\,) and A = diag (A\p41, ..., \n), so that AW = WA, and AW = WA.

We know from the earlier discussion that the matrix X (%) is obtained by orthonormalizing the
columns of A*X©) more precisely, we have AFX () = X®) R(F) for some upper triangular R,
This means that X*) = Ak X ©)(R())~1 and thus:

WTx® = wTARx O (RIY=1 = Ak (T x @) . (R*))~L, (5.2)
where we used the fact that W7 A* = A*W7. In a very similar way we can write
WTXx® = wT Ak x O (RINY=1 = Ak (T x @) . (R~ (5.3)

By assumption, we know that W7 X(®) ¢ RP*? is invertible. This allows us to eliminate (R*))~*
in (5.2) using (5.3). Indeed we can write, using (5.3),

(R(k))—l - (WTX(O))—l AR (WTX(k))
which, when plugging into (5.2) gives us
wTx(k) — Ak, (WTX(O)) . (WTX(O))fl AR (WTX(k)).
Now we can finish the proof:
[T Xy < [B¥l - [ XO 5 [T XO) - A - [T X P
< cPpa]*/1Apl*
where we used ||[A¥||y = |A\p11|*, [A7*|la = [N, 7F, and [[WTX*)||y < 1 since W and X*) have

orthonormal columns, and where ¢ = [|[WT X O ||, - [[((WTX©O)=1||, > 0. O

Consequence Assume that the eigenvalues all have distinct magnitudes, namely |A;| > [A2| >
--- > |\, |, and consider applying simultaneous iteration with p = n. The theorem above shows
that, for each i = 1,...,n — 1, columns 1 to i of X(*) will converge to span(wy,...,w;). In
particular, this implies that i’th column of X *) will converge to +w;, so that (X(*)TAX®*) —
diag (A1, ..., An).

OR iterations Given the above remark, it is useful to rewrite simultaneous iteration to keep
track of the matrices A®) = (X )T AX(*)_ This gives the following, known as the basic QR iter-
ations

BASIC QR ITERATION — Let X (9 ¢ R"*" has orthonormal columns
Let A = (XO)TAX©) Fork =0,1,2

e QR = qr(A®)
° A(k'+1) _ RQ

Note that the last line is equivalent to A**1) = QT A% Q: indeed, QT AXQ = QT (QR)Q =
RQ. 1t is not difficult to show by induction that the matrices A*) produced by QR iteration, are
the same as (X *)T AX (), where X (*) is produced by simultaneous iteration. Indeed, this is the
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case for k = 0. Now assume that A®) = (X*)T AX*) for some k. We know, from simultane-
ous iteration, that X (1) is obtained by performing a QR factorization of AX*) ie., AX®*) =
XD R+ Note that this automatically gives us a QR factorization of A®) = (X*)T Ax*)
since X (¥ is orthogonal, namely: A®) = QR where Q = (X*)TX(*+1) and R = R+, Now
this allows us to show that AF+1D) = (X -+ T A X (R+D): indeed

AR+ — QTA(k)Q — ((X(k+1))TX(k))((X(k))TAX(k))((X(k))TX(kH)) — (X(’““))TAX(’““).
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