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Mathematical Tripos Part II: Michaelmas Term 2022

Numerical Analysis – Lecture 2
Approximation 1.6 The nine-point method:
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ui,j = h2fi,j

As such, it again produces error of O(h4). However, this can be remedied by a clever trick of adding the
term 1

12
h4∇2f to the right-hand side, with the 5-point approximation to h2∇2f , which increases the order

to O(h6) (see Exercise 1).

Problem 1.8 Finite-difference discretization of ∇2u = f replaces the PDE by a large system of
linear equations. In the sequel we pay special attention to the five-point formula, which results in
the approximation

h2∇2u(x, y) ≈ u(x− h, y) + u(x+ h, y) + u(x, y − h) + u(x, y + h)− 4u(x, y) . (1.5)

For the sake of simplicity, we restrict our attention to the important case of Ω being a unit square,
where h= 1

m+1 for some positive integer m. Thus, we estimate the m2 unknown function values
u(ih, jh)mi,j=1 (where (ih, jh) ∈ Ω) by letting the right-hand side of (1.5) equal h2f(ih, jh) at each
value of i and j. This yields an n× n system of linear equations with n = m2 unknowns ui,j :

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = h2f(ih, jh) . (1.6)

(Note that when i or j is equal to 1 or m, then the values u0,j , ui,0 or ui,m+1, um+1,j are known
boundary values and they should be moved to the right-hand side, thus leaving fewer unknowns
on the left.) Having ordered grid points, we can write (1.6) as a linear system, say

Au = b .

Our present concern is to prove that, as h → 0, the numerical solution (1.6) tends to the exact
solution of the Poisson equation∇2u = f (with appropriate Dirichlet boundary conditions).

Example 1.9 (Natural ordering) The way the matrix A of this system looks depends of course on
the way how the grid points (ih, jh) are being assembled in the one-dimensional array. In the nat-
ural ordering, when the grid points are arranged by columns, A is the following block tridiagonal
matrix:

A =


B I
I B I

. . .
. . .

. . .
I B I

I B

 , B =


−4 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 −4

 .

Matlab demo (natural ordering animation): www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/partii.php.

Before heading on let us prove the following simple but useful theorem whose importance
will become apparent in the course of the lecture.

Theorem 1.10 (Gershgorin theorem) All eigenvalues of an n×n matrix A are contained in the union
of the Gershgorin discs in the complex plane:

σ(A) ⊂ ∪ni=1Γi , Γi := {z ∈ C : |z − aii| ≤ ri}, ri :=
∑
j 6=i |aij | .
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Proof. For any matrix A, if Ax = λx and |xi| = max |xj |, then the ith equation of the relation
Ax = λx gives

|λ− aii| · |xi| =
∣∣∣∑
j 6=i

aijxj

∣∣∣ ≤∑
j 6=i

|aij ||xj | ≤ |xi|
∑
j 6=i

|aij | =: |xi| ri ,

and after dividing by |xi| we obtain |λ − aii| ≤ ri. So, for any eigenvalue λ of A, the inequality
|λ− aii| ≤ ri is valid for at least one value of i, hence the theorem. �

Lemma 1.11 For any ordering of the grid points, the matrix A of the system (1.6) is symmetric and nega-
tive definite.

Proof. Equation (1.6) implies that if aij 6= 0 for i 6= j, then the i-th and j-th points of the grid
(ph, qh), are nearest neighbours. Hence aij 6= 0 implies aij = aji = 1, which proves the symmetry
of A. Therefore A has real eigenvalues and eigenvectors.

It remains to prove that all the eigenvalues are negative. The arguments are parallel to the
proof of Gershgorin theorem. Let Ax = λx, and let i be an integer such that |xi| = max |xj |. With
such an i we address the following identity (which is a reordering of the equation (Ax)i = λxi):∣∣(λ− aii)xi|︸ ︷︷ ︸

|λ+4| |xi|

=
∣∣∑n

j 6=i aijxj
∣∣︸ ︷︷ ︸

≤4 |xi|

. (1.7)

Here aii = −4 and aij ∈ {0, 1} for j 6= i, with at most four nonzero elements on the right-hand
side. It is seen that the case λ > 0 is impossible. Assuming λ = 0, we obtain |xj | = |xi| whenever
aij = 1, so we can alter the value of i in (1.7) to any of such j and repeat the same arguments.
Thus, the modulus of every component of x would be |xi|, but then the equations (1.7) that occur
at the boundary of the grid and have fewer than four off-diagonal terms (see (1.6)) could not be
true. Hence, λ = 0 is impossible too, hence λ < 0 which proves that A is negative definite. �

Proposition 1.12 The eigenvalues of the matrix A are

λk,` = −4
(

sin2 kπh

2
+ sin2 `πh

2

)
, h =

1

m+ 1
, k, ` = 1...m.

Proof. Let us show that, for every pair (k, `), the vectors

v = (vi,j), vi,j = sin ix sin jy, where x = kπh, y = `πh,

are the eigenvectors of A. Indeed, for i, j = 1...m, we have

(Av)i,j = sin(jy)
[

sin(ix− x)− 2 sin(ix) + sin(ix+ x)
]

+ sin(ix)
[

sin(jy − y)− 2 sin(jy) + sin(jy + y)
]

= sin(jy) sin(ix)
[
2 cosx− 2] + sin(ix) sin(jy)

[
2 cos y − 2

]
= λvi,j .

Note that the terms ui±1,j , ui,j±1 do not appear in (1.6) for i, j=1 or i, j=m, respectively, therefore
(for such i, j) we should have dropped the corresponding components from above equation, but
they are equal to zero because sin(i − 1)x = 0 for i = 1, while sin(i + 1)x = 0 for i = m, since
x = kπ

m+1 . Thus, the eigenvalues are

λk,` =
[
2 cosx− 2

]
+
[
2 cos y − 2

]
= −4

(
sin2 x

2
+ sin2 y

2

)
= −4

(
sin2 kπh

2
+ sin2 `πh

2

)
. �

Remark 1.13 As a matter of independent mathematical interest, note that for 1 ≤ k, ` � m we
have sinx ≈ x, hence the eigenvalues for the discretized Laplacian∇2

h are

λk,`
h2
≈ − 4

h2

[
k2π2h2

4
+
`2π2h2

4

]
= −(k2 + `2)π2 .

Now, recall (e.g. from the solution of the Poisson equation in a square by separation of variables
in Maths Methods) that the exact eigenvalues of∇2 (in the unit square) are −(k2 + `2)π2, k, ` ∈ N,
with the corresponding eigenfunctions Vk,`(x, y) = sin kπx sin `πy. So, the eigenvectors of the dis-
cretized∇2

h are the values of Vk,`(x, y) on the grid-points, and the eigenvalues of∇2
h approximate

those for continuous case.
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