Mathematical Tripos Part II: Michaelmas Term 2022

Numerical Analysis – Lecture 5

Stability, consistency and the Lax equivalence theorem Suppose that a numerical method for a partial differential equation of evolution can be written in the form¹

$$\boldsymbol{u}^{n+1} = A_h \boldsymbol{u}^n$$

where $u^n \in \mathbb{R}^M$, $A_h \in \mathbb{R}^{M \times M}$ is a matrix, and $h = \frac{1}{M+1}$. Fix a norm $\|\cdot\|$ on \mathbb{R}^M , and let $\|A_h\| = \sup \frac{\|A_h x\|}{\|x\|}$ be the corresponding induced matrix norm. If we define *stability* as preserving the boundedness of u^n with respect to the norm $\|\cdot\|$, then since

$$\|\boldsymbol{u}^n\| \le \|A_h^n \boldsymbol{u}^0\| \le \|A_h\|^n \|\boldsymbol{u}^0\|,$$

we get:

$$||A_h|| \le 1$$
 as $h \to 0$ \Rightarrow the method is stable.

If we denote the exact solution of the PDE by $\widehat{u}(x,t)$ and let $\widehat{u}^n = (\widehat{u}(mk,nt))_{1 \leq m \leq M}$, then we have $\widehat{u}^{n+1} = A_h \widehat{u}^n + \eta^n$ where η^n is the local truncation error. The error vector $e^n = \widehat{u}^n - u^n$ satisfies

$$e^{n+1} = A_h e^n + \eta^n.$$

Using $||A_h|| \le 1$ and assuming $||e^0|| = 0$, we get $||e^n|| \le ||\eta^{n-1}|| + \cdots + ||\eta^0||$. If consistency holds, i.e., $||\eta^n|| = O(k^2)$, then we see that $||e^n|| \le nck^2$ for some constant c > 0. Since $n \le T/k$ we end up with $||e^n|| \le cTk$, and so $||e^n|| \to 0$ as $k \to 0$ uniformly in $n \in [1, T/k]$. This shows convergence.

We have thus arrived at the *Lax equivalence theorem*: "consistency + stability = convergence" (more precisely what we have proved here is the implication \Longrightarrow).

Norms The discussion above involves a choice of norm on \mathbb{R}^M . There are two standard choices of norms:

• *Sup-norm*. Here, we choose

$$\|u\| = \|u\|_{\infty} = \max_{i=1,...,M} |u_i|.$$

It can be easily shown that the corresponding induced norm for a matrix $A \in \mathbb{R}^{M \times M}$ is given by:

$$||A||_{\infty \to \infty} := \sup_{\boldsymbol{x}} \frac{||A\boldsymbol{x}||_{\infty}}{||\boldsymbol{x}||_{\infty}} = \max_{i=1,\dots,M} \sum_{j=1}^{M} |A_{ij}|.$$

This the choice of norm we implicitly used in the convergence proof of Theorem 2.1 (Lecture 4). The matrix in this case was

$$A_h = \begin{bmatrix} 1 - 2\mu & \mu \\ \mu & \ddots & \ddots \\ & \ddots & \ddots & \mu \\ & & \mu & 1 - 2\mu \end{bmatrix},$$

for which we get $||A_h||_{\infty \to \infty} = |1 - 2\mu| + 2\mu \le 1$ if $\mu \le 1/2$.

 Normalized Euclidean norm. Another common of choice of norm is the normalized Euclidean length, namely,

$$\|u\| := \sqrt{\frac{1}{M} \sum_{i=1}^{M} |u_i|^2}.$$

¹Assuming zero boundary conditions

The reason for the factor $\frac{1}{M}$ is to ensure that, because of the convergence of Riemann sums, we obtain

$$\|\boldsymbol{u}\| := \left[\frac{1}{M} \sum_{i=1}^{M} |u_i|^2\right]^{1/2} \to \left[\int_0^1 |u(x)|^2 dx\right]^{1/2} =: \|u\|_{L_2} \qquad (h = 1/(M+1) \to 0),$$

The induced matrix norm in this case is the *spectral norm* (or the *operator norm*) and is denoted $||A||_2$:²

$$||A||_2 := \sup_{\boldsymbol{x}} \frac{||A\boldsymbol{x}||_2}{||\boldsymbol{x}||_2}.$$

The spectral norm of A is equal to the largest singular value of A. Equivalently, we can write $||A||_2 = [\rho(AA^T)]^{1/2}$ where ρ is the spectral radius:

$$\rho(M) := \max\{|\lambda| : \lambda \text{ eigenvalue of } M\}.$$

For certain matrices, such as normal matrices, one can show that $||A||_2 = \rho(A)$.

Definition 1.19 (Normal matrices) A complex matrix $A \in \mathbb{C}^{M \times M}$ is *normal* if it commutes with its conjugate transpose, i.e., $A\bar{A}^T = \bar{A}^T A$.

Examples of real normal matrices include symmetric matrices $(A = A^T)$ and skew-symmetric matrices $(A = -A^T)$. Any normal matrix A can be diagonalized in an orthonormal basis, i.e., $A = QD\bar{Q}^T$ where Q unitary, $Q\bar{Q}^T = \bar{Q}^TQ = I$, and D is diagonal. Note however that the diagonal elements D_{ii} are not necessarily real!

Proposition 1.20 *If* A *is normal, then* $||A||_2 = \rho(A)$.

Proof. Let u be any vector. We can expand it in the basis of the orthonormal eigenvectors $u = \sum_{i=1}^{n} a_i q_i$. Then $Au = \sum_{i=1}^{n} \lambda_i a_i q_i$, and since q_i are orthonormal, we obtain

$$||A||_2 := \sup_{\boldsymbol{u}} \frac{||A\boldsymbol{u}||_2}{||\boldsymbol{u}||_2} = \sup_{a_i} \frac{\{\sum_{i=1}^n |\lambda_i a_i|^2\}^{1/2}}{\{\sum_{i=1}^n |a_i|^2\}^{1/2}} = |\lambda_{\max}|.$$

Example 1.21 We can analyze the stability of [(2.2), Lecture 4] using the eigenvalue methods just described. The recurrence (2.2) can be written as:

$$u_m^{n+1} = u_m^n + \mu \left(u_{m-1}^n - 2u_m^n + u_{m+1}^n \right), \qquad m = 1...M,$$

in the matrix form

$$oldsymbol{u}_h^{n+1} = A_h oldsymbol{u}_h^n, \qquad A_h = I + \mu A_*, \qquad A_* = \left[egin{array}{ccc} -2 & 1 & & & \\ 1 & \ddots & \ddots & & \\ & \ddots & \ddots & 1 & \\ & & 1 - 2 \end{array}
ight]_{M imes M}.$$

Here A_* is Toeplitz, symmetric, tridiagonal (TST), with $\lambda_\ell(A_*) = -4\sin^2\frac{\pi\ell h}{2}$, hence $\lambda_\ell(A_h) = 1-4\mu\sin^2\frac{\pi\ell h}{2}$, so that its spectrum lies within the interval $[\lambda_M,\lambda_1] = [1-4\mu\cos^2\frac{\pi h}{2},1-4\mu\sin^2\frac{\pi h}{2}]$. Since A_h is symmetric, we have

$$||A_h||_2 = \rho(A_h) = \begin{cases} |1 - 4\mu \sin^2 \frac{\pi h}{2}| \le 1, & \mu \le \frac{1}{2}, \\ |1 - 4\mu \cos^2 \frac{\pi h}{2}| > 1, & \mu > \frac{1}{2} \quad (h \le h_\mu). \end{cases}$$

We distinguish between two cases.

- 1) $\mu \leq \frac{1}{2}$: $\|u^n\| \leq \|A\| \cdot \|u^{n-1}\| \leq \cdots \leq \|A\|^n \|u^0\| \leq \|u^0\|$ as $n \to \infty$, for every u^0 .
- 2) $\mu > \frac{1}{2}$: Choose \boldsymbol{u}^0 as the eigenvector corresponding to the largest (in modulus) eigenvalue, $|\lambda| > 1$. Then $\boldsymbol{u}^n = \lambda^n \boldsymbol{u}^0$, becoming unbounded as $n \to \infty$.

²Note that if $\|\cdot\|$ is the normalized Euclidean norm, then $\|Ax\|/\|x\| = \|Ax\|_2/\|x\|_2$ where $\|x\|_2 = (\sum_i |x_i|^2)^{1/2}$ is the usual (unnormalized) Euclidean norm