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Numerical Analysis – Lecture 5

Stability, consistency and the Lax equivalence theorem Suppose that a numerical method for a partial
differential equation of evolution can be written in the form1

un+1 = Ahu
n,

whereun ∈ RM ,Ah ∈ RM×M is a matrix, and h = 1
M+1 . Fix a norm ‖·‖ on RM , and let ‖Ah‖ = sup

‖Ahx‖
‖x‖

be the corresponding induced matrix norm. If we define stability as preserving the boundedness of un

with respect to the norm ‖ · ‖, then since

‖un‖ ≤ ‖Anhu0‖ ≤ ‖Ah‖n‖u0‖,

we get:
‖Ah‖ ≤ 1 as h→ 0 ⇒ the method is stable.

If we denote the exact solution of the PDE by û(x, t) and let ûn = (û(mk, nt))1≤m≤M , then we have
ûn+1 = Ahû

n + ηn where ηn is the local truncation error. The error vector en = ûn − un satisfies

en+1 = Ahe
n + ηn.

Using ‖Ah‖ ≤ 1 and assuming ‖e0‖ = 0, we get ‖en‖ ≤ ‖ηn−1‖ + · · · + ‖η0‖. If consistency holds, i.e.,
‖ηn‖ = O(k2), then we see that ‖en‖ ≤ nck2 for some constant c > 0. Since n ≤ T/k we end up with
‖en‖ ≤ cTk, and so ‖en‖ → 0 as k → 0 uniformly in n ∈ [1, T/k]. This shows convergence.

We have thus arrived at the Lax equivalence theorem: “consistency + stability = convergence” (more
precisely what we have proved here is the implication =⇒ ).

Norms The discussion above involves a choice of norm on RM . There are two standard choices of
norms:

• Sup-norm. Here, we choose
‖u‖ = ‖u‖∞ = max

i=1,...,M
|ui|.

It can be easily shown that the corresponding induced norm for a matrix A ∈ RM×M is given by:

‖A‖∞→∞ := sup
x

‖Ax‖∞
‖x‖∞ = max

i=1,...,M

M∑
j=1

|Aij |.

This the choice of norm we implicitly used in the convergence proof of Theorem 2.1 (Lecture 4).
The matrix in this case was

Ah =


1− 2µ µ

µ
. . . . . .
. . . . . . µ

µ 1− 2µ

 ,
for which we get ‖Ah‖∞→∞ = |1− 2µ|+ 2µ ≤ 1 if µ ≤ 1/2.

• Normalized Euclidean norm. Another common of choice of norm is the normalized Euclidean length,
namely,

‖u‖ :=

√
1
M

∑M

i=1
|ui|2.

1Assuming zero boundary conditions
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The reason for the factor 1
M

is to ensure that, because of the convergence of Riemann sums, we
obtain

‖u‖ :=
[

1
M

∑M
i=1 |ui|2

]1/2
→
[∫ 1

0
|u(x)|2dx

]1/2
=: ‖u‖L2 (h = 1/(M + 1)→ 0),

The induced matrix norm in this case is the spectral norm (or the operator norm) and is denoted
‖A‖2:2

‖A‖2 := sup
x

‖Ax‖2
‖x‖2 .

The spectral norm of A is equal to the largest singular value of A. Equivalently, we can write
‖A‖2 = [ρ(AAT )]1/2 where ρ is the spectral radius:

ρ(M) := max {|λ| : λ eigenvalue of M} .

For certain matrices, such as normal matrices, one can show that ‖A‖2 = ρ(A).

Definition 1.19 (Normal matrices) A complex matrix A ∈ CM×M is normal if it commutes with its
conjugate transpose, i.e., AĀT = ĀTA.

Examples of real normal matrices include symmetric matrices (A = AT ) and skew-symmetric
matrices (A = −AT ). Any normal matrix A can be diagonalized in an orthonormal basis, i.e.,
A = QDQ̄T where Q unitary, QQ̄T = Q̄TQ = I , and D is diagonal. Note however that the
diagonal elements Dii are not necessarily real!

Proposition 1.20 If A is normal, then ‖A‖2 = ρ(A).

Proof. Let u be any vector. We can expand it in the basis of the orthonormal eigenvectors u =∑n
i=1 aiqi . Then Au =

∑n
i=1 λiaiqi, and since qi are orthonormal, we obtain

‖A‖2 := sup
u

‖Au‖2
‖u‖2

= sup
ai

{
∑n
i=1 |λiai|2}1/2

{
∑n
i=1 |ai|2}1/2

= |λmax| .

Example 1.21 We can analyze the stability of [(2.2), Lecture 4] using the eigenvalue methods just
described. The recurrence (2.2) can be written as:

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
, m = 1...M ,

in the matrix form

un+1
h = Ahu

n
h, Ah = I + µA∗, A∗ =


−2 1

1
. . .

. . .
. . .

. . . 1
1 −2


M×M

.

Here A∗ is Toeplitz, symmetric, tridiagonal (TST), with λ`(A∗) = −4 sin2 π`h
2 , hence λ`(Ah) =

1−4µ sin2 π`h
2 , so that its spectrum lies within the interval [λM , λ1] = [1−4µ cos2 πh2 , 1−4µ sin2 πh

2 ].
Since Ah is symmetric, we have

‖Ah‖2 = ρ(Ah) =

{
|1− 4µ sin2 πh

2
| ≤ 1 , µ ≤ 1

2
,

|1− 4µ cos2 πh
2
| > 1, µ > 1

2
(h ≤ hµ) .

We distinguish between two cases.

1) µ ≤ 1
2 : ‖un‖ ≤ ‖A‖ · ‖un−1‖ ≤ · · · ≤ ‖A‖n‖u0‖ ≤ ‖u0‖ as n→∞, for every u0.

2) µ > 1
2 : Choose u0 as the eigenvector corresponding to the largest (in modulus)

eigenvalue, |λ| > 1. Then un = λnu0, becoming unbounded as n→∞.

2Note that if ‖ · ‖ is the normalized Euclidean norm, then ‖Ax‖/‖x‖ = ‖Ax‖2/‖x‖2 where ‖x‖2 = (
∑

i |xi|2)1/2 is the usual
(unnormalized) Euclidean norm
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