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Numerical Analysis – Lecture 6

Semidiscretization Let um(t) = u(mh, t), m = 1...M , t ≥ 0. Approximating ∂2/∂x2 as before,
we deduce from the PDE that the semidiscretization

dum
dt

=
1

h2
(um−1 − 2um + um+1), m = 1...M (2.2)

carries an error of O(h2). This is an ODE system, and we can solve it by any ODE solver. Thus,
Euler’s method yields (2.2), while backward Euler results in

un+1
m − µ(un+1

m−1 − 2un+1
m + un+1

m+1) = unm.

This approach is commonly known as the method of lines. Much (although not all!) of the theory
of finite-difference methods for PDEs of evolution can be presented as a two-stage task: first
semidiscretize, getting rid of space variables, then use an ODE solver. Typically, each stage is
conceptually easier than the process of discretizing in unison in both time and in space (so-called
full discretization).

Example 2.4 (The Crank–Nicolson scheme for the diffusion equation) Discretizing the ODE (2.2)
with the trapezoidal rule, we obtain

un+1
m − 1

2
µ(un+1

m−1 − 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1 − 2unm + unm+1), m = 1...M. (2.3)

Thus, each step requires the solution of an M×M symmetric tridiagonal system. The error of the
scheme is O(k3 + kh2), so basically the same as with Euler’s method. However, as we will see,
Crank–Nicolson enjoys superior stability features, as compared with the method (2.2).

Note further that (2.3) is an implicit method: advancing each time step requires to solve a linear
algebraic system. However, the matrix of the system is symmetric tridiagonal and its solution by
sparse Cholesky factorization can be done in O(M) operations.

Stability: Let’s now analyze the stability of the Crank-Nicolson scheme. The recurrence equa-
tion (2.3) can be written as Bun+1 = Cun, where the matrices B and C are Toeplitz symmetric
tridiagonal (TST),

un+1 = B−1Cun,
B = I − 1

2
µA∗ ,

C = I + 1
2
µA∗ ,

A∗ =


−2 1

1
. . . . . .. . . . . . 1

1 −2


M×M

.

All M ×M TST matrices share the same eigenvectors, hence so does B−1C. Moreover, these
eigenvectors are orthogonal. Therefore, also A = B−1C is normal and its eigenvalues are

λk(A) =
λk(C)

λk(B)
=

1− 2µ sin2 1
2πkh

1 + 2µ sin2 1
2πkh

⇒ |λk(A)| ≤ 1, k = 1...M.

Consequently Crank–Nicolson is stable for all µ > 0.
Convergence: We can now analyze the convergence of the Crank-Nicolson scheme. It is not

difficult to verify that the local error of the Crank-Nicolson scheme is ηnm = O(k3 + kh2), where
O(k3) is inherited from the trapezoidal rule (compared to O(k2) for the Euler method). We also
have

‖ηn‖ = {h
∑M
m=1 |ηnm|2}1/2 = O(k3 + kh2) .

Hence, for the error vectors en we have

Ben+1 = Cen + ηn ⇒ ‖en+1‖ ≤ ‖B−1C‖ · ‖en‖+ ‖B−1‖ · ‖ηn‖ .
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We have just proved that ‖B−1C‖ ≤ 1, and we also have ‖B−1‖ ≤ 1, because all the eigenvalues
of B are greater than 1 (by Gershgorin’s theorem). Therefore, ‖en+1‖ ≤ ‖en‖+ ‖ηn‖, and

‖en‖ ≤ ‖e0‖+ n‖η‖ = n‖η‖ ≤ cT
k
(k3 + kh2) = cT (k2 + h2).

Thus, taking k=αh will result in O(h2) error of approximation.

Example 2.5 (Crank–Nicolson for advection equation) Consider the advection equation:

∂u

∂t
=
∂u

∂x
.

If we discretize the right-hand side by ∂u
∂x = 1

2h (u(x+ h, t)− u(x− h, t)) +O(h2) we end up with
the ODE

dum
dt

=
1

2h
(um+1 − um−1).

Using the trapezoidal rule this yields

un+1
m = unm + 1

4
µ(un+1

m+1 − u
n+1
m−1) +

1
4
µ(unm+1 − unm−1), m = 1...M

where µ = k/h. In this case, un+1 = B−1Cun, where the matrices B and C are given by

B =


1 − 1

4µ
1
4µ 1

. . .
. . . . . . − 1

4µ
1
4µ 1

 = I − 1

4
µA∗, C =


1 1

4µ

− 1
4µ 1

. . .
. . . . . . 1

4µ

− 1
4µ 1

 = I +
1

4
µA∗

where

A∗ =


0 1

−1 0
. . .

. . . . . . 1
−1 0

 .
Note that A∗ is skew-symmetric (AT∗ = −A∗) and so it is normal, and its eigenvalues are pure
imaginary, i.e., λk(A∗) = iγk where γk ∈ R for ` = 1, . . . ,M (one can show that γk = 2 cos(kπh)).
Reasoning like in the previous example, the eigenvalues of A = B−1C are thus given by

λk(A) =
λk(C)

λk(B)
=

1 + µ
4 i γk

1− µ
4 i γk

⇒ |λk(A)| = 1, k = 1...M.

So, Crank–Nicolson is again stable for all µ > 0.

Example 2.6 (Euler for advection equation) Finally, consider the Euler method for advection equa-
tion

un+1
m − unm = µ(unm+1 − unm), m = 1...M .

We have un+1 = Aun, where

A =


1− µ µ

1− µ
. . .
. . . µ

1− µ

 ,
but A is not normal, and although its eigenvalues are bounded by 1 for µ ≤ 2 (note 1 − µ is the
only eigenvalue of A), it is the matrix induced norm of A that matters. For this example, it is
easier to work with ‖A‖∞→∞ which we see is given by |1 − µ| + µ (by the formula in Lecture 5),
and this is smaller than 1 precisely when µ ≤ 1.
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