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Numerical Analysis – Lecture 8
Problem 2.18 (The advection equation) A useful paradigm for hyperbolic PDEs is the advection equation

ut = ux, t ≥ 0, (2.6)

where u = u(x, t). It is given with the initial condition u(x, 0) = ϕ(x). The exact solution of (2.6) is
simply u(x, t) = ϕ(x + t), a unilateral shift leftwards. This, however, does not mean that its numerical
modelling is easy.

Example 2.19 (Downwind instability) Consider the discretization ∂um(t)
∂x

≈ 1
2h

[um(t) − um−1(t)], so
coming to the ODE u′m(t) = 1

2h
[um(t)− um−1(t)]. For the Euler method, the outcome is

un+1
m = unm + µ(unm − unm−1), n ∈ Z+.

We can analyze the stability of this method using Fourier analysis. The amplification factor is

H(θ) = 1 + µ− µe−iθ.

We see that for θ = π/2, |H(θ)|2 = (1 + µ)2 + µ2 > 1, and so the method is unstable.

Method 2.20 (Upwind method) If we semidiscretize ∂um(t)
∂x

≈ 1
h
[um+1(t) − um(t)], and solve the ODE

again by Euler’s method, then the result is

un+1
m = unm + µ(unm+1 − unm), n ∈ Z+ (2.7)

The local error is O(k2+kh) which is O(h2) for a fixed µ, hence convergence if the method is stable.
We can use Fourier analysis to analyze stability. The amplification factor is

H(θ) = 1− µ+ µeiθ

and we see that |H(θ)| = |1−µ+µeiθ| ≤ |1−µ|+µ = 1 for µ ∈ [0, 1]. Hence we have stability for µ ≤ 1.

Matlab demo: Download the Matlab GUI for Solving the Advection Equation, Upwinding and Stability from
https://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/index.html and solve the
advection equation (2.6) with the different methods provided in the demonstration. Experience what
can go wrong when “winding” in the wrong direction!

Method 2.21 (The leapfrog method) We semidicretize (2.6) as ∂um(t)
∂x

≈ 1
2h

[um+1(t)−um−1(t)], but now
solve the ODE with the second-order midpoint rule

yn+1 = yn−1 + 2kf(tn,yn), n ∈ Z+ .

The outcome is the two-step leapfrog method

un+1
m = µ (unm+1 − unm−1) + un−1m . (2.8)

The error is now O(k3+kh2) = O(h3). We analyse stability by the Fourier technique. Thus, proceeding
as before,

ûn+1(θ) = µ
(
eiθ − e−iθ

)
ûn(θ) + ûn−1(θ) (2.9)

whence
ûn+1(θ)− 2iµ sin θ ûn(θ)− ûn−1(θ) = 0, n ∈ Z+ ,

and our goal is to determine values of µ such that |ûn(θ)| is uniformly bounded for all n, θ. This is a
difference equation wn+1 + bwn + cwn−1 = 0 with the general solution wn = c1λ

n
1 + c2λ

n
2 , where λ1, λ2

are the roots of the characteristic equation λ2 + bλ + c = 0, and c1, c2 are constants, dependent on the
initial values w0 and w1. If λ1 = λ2, then solution is wn = (c1 + c2n)λ

n. In our case, we obtain

λ1,2(θ) = iµ sin θ ±
√
1− µ2 sin2 θ .

Stability is equivalent to |λ1,2(θ)| ≤ 1 for all θ and this is true if and only if µ ≤ 1.
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Problem 2.22 (Stability in the presence of boundaries) It is easy to extend Fourier analysis for the up-
wind Euler method un+1

m = unm + µ(unm+1 − unm), with the initial condition u(x, 0) = φ(x), x ∈ [0, 1), and
zero boundary condition along x = 1. Consider the Cauchy problem for the advection equation with
the initial condition u(x, 0) = φ(x) for x ∈ [0, 1), and u(x, 0) = 0 otherwise. Solving the Cauchy problem
with Euler, we recover un that is identical to the solution obtained from the zero boundary condition.
This justifies using Fourier analysis for the problem with a boundary, and we obtain

ûn+1(θ) = H(θ) ûn(θ) , H(θ) = (1− µ) + µeiθ ,

so that max |H(θ)| = |1− µ|+ |µ|, hence stability if and only if µ ≤ 1.
Unfortunately, this is no longer true for leapfrog. Closer examination reveals that we cannot use

leapfrog at m = 0, since un−1 is unknown. The naive remedy, setting un−1 = 0, leads to instability, which
propagates from the boundary inwards. We can recover stability letting, for example, un+1

0 = un1 (the
proof is difficult though).

Problem 2.23 (The wave equation) Consider the wave equation

∂2u

∂t2
=
∂2u

∂x2
t ≥ 0,

given with initial conditions u(x, 0) and ut(x, 0) =
∂u
∂t

(x, 0). The usual approximation looks as follows

un+1
m − 2unm + un−1m = µ(unm+1 − 2unm + unm−1) ,

with the Courant number being now µ = k2/h2.
The Fourier analysis (for Cauchy problem) provides

ûn+1(θ)− 2ûn(θ) + ûn−1(θ) = −4µ sin2 θ2 û
n(θ) ,

with the characteristic equation λ2 − 2(1− 2µ sin2 θ2 )λ+ 1 = 0. The product of the roots is one, therefore
stability (that requires the moduli of both λ to be at most one) is equivalent to the roots being complex
conjugate, so we require

(1− 2µ sin2 θ2 )
2 ≤ 1.

This condition is achieved if and only if µ = k2/h2 ≤ 1.
Remark: To advance in time we have to pick up the numbers u1m = u(xm, k). Euler’s method provides

the obvious choice u(xm, k) = u(xm, 0)+ kut(xm, 0), but the following technique enjoys better accuracy.
Specifically, we set u1m to the right-hand side of the formula

u(xm, k) ≈ u(xm, 0) + kut(xm, 0) +
1
2
k2utt(xm, 0)

= u(xm, 0) + kut(xm, 0) +
1
2
k2uxx(xm, 0)

≈ u0m + 1
2
µ(u0m−1 − 2u0m + u0m+1) + kut(xm, 0) .
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