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Numerical Analysis – Lecture 10

Linear systems of ODEs In all the examples of semi-discretization we have seen so far, we
always reach a linear system of ODE of the form:

u′ = Au, u(0) = u0. (2.17)

The solution of this linear system of ODE is given by

u(t) = etAu0 (2.18)

where the matrix exponential function is defined by eB :=
∑∞

k=0
1
k!
Bk. It is easily verified that

detA/dt = AetA, therefore (2.18) is indeed a solution of (2.17).
If A can be diagonalized A = V DV −1, then etA = V etDV −1 where etD is the diagonal matrix

consisting diag (etDii). As such one can compute the solution of (2.17) exactly. However comput-
ing an eigenvalue decomposition can be costly, and so one would like to consider more efficient
methods, based on the solution of sparse linear systems instead.

Observe that one-step methods for solving (2.17) are approximating a matrix exponential. In-
deed, with k = ∆t, we have:

Euler: un+1 = (I + kA)un, ez = 1 + z +O(z2);

Implicit Euler: un+1 = (I − kA)−1un, ez = (1− z)−1 +O(z2);

Trapezoidal Rule: un+1 =
(
I − 1

2kA
)−1 (

I + 1
2kA

)
un, ez =

1+ 1
2
z

1− 1
2
z

+O(z3).

In practice the matrix A is very sparse, and this can be exploited when solving linear systems e.g.,
for the implicit Euler or Trapezoidal Rule.

Splitting In many cases, the matrix A is naturally expressed as a sum of two matrices, A = B +
C. For example, when discretizing the diffusion equation in 2D with zero boundary conditions,
we have A = 1

h2 (Ax + Ay) where 1
h2Ax ∈ RM2×M2

corresponds to the 3-point discretization of
∂2

∂x2 , and 1
h2Ay ∈ RM2×M2

corresponds to the 3-point discretization of ∂2

∂y2 . In matrix notations, if
the grid points are ordered by columns, then we have:

Ax =


−2I I

I
. . . . . .. . . . . . I

I −2I

 , Ay =

 GG . . .
G

 , G =


−2 1

1
. . . . . .. . . . . . 1

1 −2

 ∈ RM×M . (2.19)

Remark: It is convenient to note that Ax = G ⊗ I and Ay = I ⊗ G, where ⊗ is the Kronecker
product of matrices (kron in Matlab) defined by

A⊗B =


A11B A12B . . . A1mA

B
A21B A22B . . . A2mA

B
...

AnA1B . . . . . . AnAmA
B

 ∈ RnAnB×mAmB

where A ∈ RnA×mA and B ∈ RnB×mB .
In general, exp(t(B + C)) 6= exp(tB) exp(tC). Equality holds however when B and C com-

mute.

Proposition 2.31 For any matrices B,C,

et(B+C) = etBetC + 1
2
t2(CB −BC) +O(t3). (2.20)

If B and C commute, then eB+C = eBeC .
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Proof. We Taylor-expand both expressions etBetC and et(B+C):

etBetC = (I + tB + t2B2/2 +O(t3))(I + tC + t2C2/2 +O(t3))

= I + t(B + C) + t2

2
(B2 + C2 + 2BC) +O(t3)

and
et(B+C) = I + t(B + C) + t2

2
(B + C)2 +O(t3)

= I + t(B + C) + t2

2
(B2 + C2 +BC + CB) +O(t3).

Equation (??) follows.
When B and C commute, we can write:

eB+C =

∞∑
k=0

1

k!
(B + C)k =

∞∑
k=0

1

k!

∑
i+j=k

(
k

i

)
BiCj =

∞∑
i,j=0

1

i!j!
BiCj = eBeC

where in the second step we used the fact that B and C commute. �
Back to the 2D diffusion equation: the matrices Ax and Ay in (2.19) happen to commute: this

is easy to check, and not surprising since the operators ∂2/∂x2 and ∂2/∂y2, which Ax/h
2 and

Ay/h
2 approximate, are known to commute. So we have ekA = ekAx/h

2

ekAy/h
2

. This means
that the solution of the semi-discretized diffusion equation in 2D, with zero boundary conditions,
satisfies

un+1 = ekAx/h
2

ekAy/h
2

un. (2.21)

Split Crank-Nicolson: In the split Crank-Nicolson scheme, we approximate each exponential
map in (2.21) by the rational function r(z) = (1 + z/2)(1− z/2)−1, which leads to

un+1 = (I +
µ
2
Ax)(I − µ

2
Ax)−1(I +

µ
2
Ay)(I − µ

2
Ay)−1un. (2.22)

Note that computing un+1/2 = (I +
µ
2
Ay)(I − µ

2
Ay)−1un can be done efficiently in O(M2) time

as Ay is block-diagonal, and the matrices G are tridiagonal (each tridiagonal solve requiresO(M)
time, and we haveM of these). Computing un+1 = (I+

µ
2
Ax)(I− µ

2
Ax)−1un+1/2 can also be done

in O(M2) time, since Ax is also block-diagonal provided we appropriately permute the rows and
columns so that the grid ordering is by rows instead of columns. This means that the update step
(2.22) of Split-Crank-Nicolson can be performed in time O(M2) and only requires tridiagonal
matrix solves (no FFT needed).

One can easily verify stability of the split Crank-Nicolson scheme. Indeed, we can write

‖un+1‖2 ≤ ‖r(µAx)‖2‖r(µAy)un‖2
≤ ‖r(µAx)‖2‖r(µAy)‖2‖un‖2
= ρ[r(µAx)] · ρ[r(µAy)] · ‖un‖2

where in the last equality we used the fact that r(µAx) and r(µAy) are symmetric to replace their
operator norm with their spectral radius. The function r(z) = (1+ 1

2
z)(1− 1

2
z)−1 satisfies |r(z)| ≤ 1

for z ∈ C with Re z ≤ 0. By the Gersgorin theorem, we see that the eigenvalues of Ax and Ay are
nonpositive. This implies that ρ[r(µAx)], ρ[r(µAy)] ≤ 1, proving ‖un+1‖ ≤ ‖un‖ ≤ · · · ≤ ‖u0‖,
hence stability.

In general, however, the matrices B and C in A = B + C do not have to commute, as in the
following example:

2D diffusion with variable diffusion coefficient The general diffusion equation with a diffu-
sion coefficient a(x, y) > 0 is given by:

∂u

∂t
=

∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
, (2.23)

20



together with initial conditions on [0, 1]2 and Dirichlet boundary conditions along ∂[0, 1]2×[0,∞).
We replace each space derivative by central differences at midpoints,

dg(ξ)

dξ
≈
g(ξ + 1

2
h)− g(ξ − 1

2
h)

h
,

resulting in the ODE system

u′`,m = 1
h2

[
a`− 1

2 ,m
u`−1,m + a`+ 1

2 ,m
u`+1,m + a`,m− 1

2
u`,m−1 + a`,m+ 1

2
u`,m+1

−
(
a`− 1

2 ,m
+ a`+ 1

2 ,m
+ a`,m− 1

2
+ a`,m+ 1

2

)
u`,m

]
.

(2.24)

Assuming zero boundary conditions, we have a system u′ = Au, and the matrix A can be split as
A = 1

h2 (Ax +Ay). Here, Ax and Ay are again constructed from the contribution of discretizations
in the x- and y-directions respectively, namely Ax includes all the a`± 1

2 ,m
terms, and Ay consists

of the remaining a`,m± 1
2

components.
The resulting operators Ax and Ay do not necessarily commute, and so the splitting scheme

un+1 = ekAx/h
2

ekAy/h
2

un

will carry an error of O(k2), following (2.20).
Strang splitting: One can obtain better splitting approximations of et(B+C). For example it is

not hard to prove that e
1
2 tBetCe

1
2 tB gives a O(t3) approximation of et(B+C), i.e.,

et(B+C) = e
1
2 tBetCe

1
2 tB +O(t3). (2.25)

Remark 2.32 (Splitting of inhomogeneous systems) Our exposition so far has been limited to
the case of zero boundary conditions. In general, the linear ODE system is of the form

u′ = Au + b, u(0) = u0, (2.26)

where b originates in boundary conditions (and, possibly, in a forcing term f(x, y) in the original
PDE (2.23)). Note that our analysis should accommodate b = b(t), since boundary conditions
might vary in time! The exact solution of (2.26) is provided by the variation of constants formula

u(t) = etAu(0) +

∫ t

0

e(t−s)Ab(s) ds, t ≥ 0,

therefore

u(tn+1) = ekAu(tn) +

∫ tn+1

tn

e(tn+1−s)Ab(s) ds .

The integral on the right-hand side can be evaluated using quadrature. For example, the trape-
zoidal rule

∫ k

0
g(τ) dτ = 1

2
k[g(0) + g(k)] +O(k3) gives

u(tn+1) ≈ ekAu(tn) + 1
2
k[ekAb(tn) + b(tn+1)],

with a local error of O(k3). We can now replace exponentials with their splittings. For example,
Strang’s splitting (2.25), together with the rational function approximation r(z) = (1 + z/2)/(1−
z/2) of the exponential map, results in

un+1 = r
(1
2
kB
)
r
(
kC
)
r
(1
2
kB
)[
un + 1

2
kbn

]
+ 1

2
kbn+1.

As before, everything reduces to (inexpensive) solution of tridiagonal systems!
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