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Mathematical Tripos Part II: Michaelmas Term 2022

Numerical Analysis — Lecture 10

Linear systems of ODEs In all the examples of semi-discretization we have seen so far, we
always reach a linear system of ODE of the form:

u = Au, u(0) = uo. (2.17)

The solution of this linear system of ODE is given by
u(t) = ety (2.18)
where the matrix exponential function is defined by e® := Y77 %B’“ . It is easily verified that

det4 /dt = Ae'4, therefore (2.18) is indeed a solution of (2.17).

If A can be diagonalized A = VDV 1, then !4 = Ve!PV ~! where ! is the diagonal matrix
consisting diag (e'”#). As such one can compute the solution of (2.17) exactly. However comput-
ing an eigenvalue decomposition can be costly, and so one would like to consider more efficient
methods, based on the solution of sparse linear systems instead.

Observe that one-step methods for solving (2.17) are approximating a matrix exponential. In-
deed, with k = At, we have:

Euler: u"tt = (I + kA)u, e* =1+ 2+ O(22);
Implicit Euler: utl = (I — kA)"tum, e* = (1-2)"1+0(z?);
1+%z

Trapezoidal Rule: u"™! = (I — %k:A)_l (I+3kA)um, e =

1— % P + 0(23)
In practice the matrix A is very sparse, and this can be exploited when solving linear systems e.g.,
for the implicit Euler or Trapezoidal Rule.

Splitting In many cases, the matrix A is naturally expressed as a sum of two matrices, A = B +
C. For example, when discretizing the diffusion equation in 2D with zero boundary conditions,

we have A = (A, + A,) where 54, € RM*M corresponds to the 3-point discretization of

2 2 2 . . . . 2 . . .
Zez,and 75 A, € RMM corresponds to the 3-point discretization of £ . In matrix notations, if

the grid points are ordered by columns, then we have:
—2I I a 21
A= L A= Y e= | L erM @9)
I -2I G 1 -2

Remark: It is convenient to note that A, = G ® I and A, = I ® G, where ® is the Kronecker
product of matrices (kron in Matlab) defined by

AllB AlgB A AlmAB

A21B AQQB ce AQmAB o o
AR B= . c RransXmamp

A,.1B ... oo ApmaB

where A € R"4*™4 and B € R"B8*™5,
In general, exp(¢t(B + C')) # exp(tB)exp(tC). Equality holds however when B and C' com-
mute.

Proposition 2.31 For any matrices B, C,
tPHO) = otBetC 4 Li2(0B — BO) + O(F). (2.20)

If B and C commute, then eB+C = eBeC.
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tB otC (B+0).

Proof. We Taylor-expand both expressions e and e’

e!Bel® = (I +tB+t*B%/2 4+ O(t*))(I +tC +t>C? /2 + O(t?))
=I+4+t(B+C)+ 5(32 +C?% 4+ 2BC) 4+ O(t)

and
!BTO) — [ (B4 C) + %(B +0)2+0(t%)

:I+t(B+C)+5(BQ+CQ+BC+OB)+(9(t3).

Equation (??) follows.
When B and C commute, we can write:

eBHC = z:%(B—FC')’C = Z% Z (i)BlC’J = Z i!ij!Blcj =eBeC

k=0 k=0 ' it+j=k i,j=0

where in the second step we used the fact that B and C' commute. O

Back to the 2D diffusion equation: the matrices A, and A, in (2.19) happen to commute: this
is easy to check, and not surprising since the operators 9?/9z% and §%/9y?, which A, /h* and
A,/h? approximate, are known to commute. So we have ef4 = ek4s/h"ckAy/h*  This means
that the solution of the semi-discretized diffusion equation in 2D, with zero boundary conditions,
satisfies

! = okAz/h gk Ay /R g (2.21)

Split Crank-Nicolson: In the split Crank-Nicolson scheme, we approximate each exponential
map in (2.21) by the rational function r(z) = (1 + 2z/2)(1 — z/2)~!, which leads to

W = (1 AT~ BA) TN+ LA - B4 (222)

Note that computing u" /2 = (I + £A,)(I — §A,)'u" can be done efficiently in O(M?) time
as A, is block-diagonal, and the matrices G are trldlagonal (each tridiagonal solve requires O(M)
time, and we have M of these). Computing u™™ = (I+5A4,)(I - gAw)‘lu”H/ 2 can also be done
in O(M?) time, since A, is also block-diagonal provided we appropriately permute the rows and
columns so that the grid ordering is by rows instead of columns. This means that the update step
(2.22) of Split-Crank-Nicolson can be performed in time O(M?) and only requires tridiagonal
matrix solves (no FFT needed).
One can easily verify stability of the split Crank-Nicolson scheme. Indeed, we can write

[l < llr(uda) l]lr(pAy Ju” |2
< lr (e 2llr (Ay) |2 ]le™ |2
= plr(pAz)] - plr(pAy)] - [[u”l2

where in the last equality we used the fact that r(pA,) and r(1A,) are symmetric to replace their
operator norm with their spectral radius. The function r(z) = (1+ %z) (1— %z)*l satisfies |r(z)| < 1
for z € C with Re z < 0. By the Gersgorin theorem, we see that the eigenvalues of A, and A, are
nonpositive. This implies that p[r(uA.)], p[r(p4,)] < 1, proving |lu™ ™| < [lu?|| < - < |[uf)),
hence stability.

r

r

In general, however, the matrices B and C in A = B + C do not have to commute, as in the
following example:

2D diffusion with variable diffusion coefficient The general diffusion equation with a diffu-
sion coefficient a(x,y) > 0 is given by:

ou 0 ou 0 ou
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together with initial conditions on [0, 1] and Dirichlet boundary conditions along 9[0, 1]>x [0, c0).
We replace each space derivative by central differences at midpoints,

dg(¢) _ 9(&+ 5h) — g(€ - 3h)

~

dé h ’

resulting in the ODE system

/ o 1
Upm — p2 aé—%,muf—lym + aé—&-%,muf-i-lﬂn + a[,m—%u&m—l + G’Z,m+%uf,m+1

(2.24)
- (af—%,m + af-{-%ﬂn + aéﬂn—% + aéﬂn-{-%)ue,m} .

Assuming zero boundary conditions, we have a system v’ = Au, and the matrix A can be split as
A= %(Az + Ay). Here, A, and A, are again constructed from the contribution of discretizations
in the z- and y-directions respectively, namely A, includes all the a, 1 ,, terms, and A, consists
of the remaining ay .1 components.

The resulting operators A, and A, do not necessarily commute, and so the splitting scheme

utl — ekA,/fﬂekAy/hzun

will carry an error of O(k?), following (2.20).

Strang splitting: ~ One can obtain better splitting approximations of et(
not hard to prove that ez*Be!

B+C), For example it is

e'Ce3'B gives a O(t3) approximation of e'(B+C) je.,
ot(BHC) _ (3tBtC 518 | O(t%). (2.25)

Remark 2.32 (Splitting of inhomogeneous systems) Our exposition so far has been limited to
the case of zero boundary conditions. In general, the linear ODE system is of the form

u = Au+b, u(0) = u?, (2.26)

where b originates in boundary conditions (and, possibly, in a forcing term f(x,y) in the original
PDE (2.23)). Note that our analysis should accommodate b = b(t), since boundary conditions
might vary in time! The exact solution of (2.26) is provided by the variation of constants formula

t
u(t) = etu(0) +/ et=9)4p(s)ds,  t>0,
0

therefore .
n+1
w(tni) = e*u(t,) + / eltnt1=9)4p(5) ds .
¢

The integral on the right-hand side can be evaluated using quadrature. For example, the trape-
zoidal rule f(fg(T) dr = %k[g(O) + g(k)] + O(k3) gives

U(tni1) ~ e ulty) + 5k 4b(t,) + b(tns1)],
with a local error of O(k?®). We can now replace exponentials with their splittings. For example,
Strang’s splitting (2.25), together with the rational function approximation r(z) = (1 + 2/2)/(1 —
z/2) of the exponential map, results in
u" = r(3kB)r(kC)r(3kB) [u" + $kb"] + Skb"F1.

As before, everything reduces to (inexpensive) solution of tridiagonal systems!
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