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Numerical Analysis – Lecture 11

3 Spectral Methods

Finite difference schemes rest upon the replacement of derivatives by a linear combination of
function values. This leads to the solution of a system of algebraic equations, which on the one
hand tends to be large (due to the slow convergence properties of the approximation) but on the
other hand is highly structured and sparse, leading itself to effective algorithms for its solution.
In this chapter we look at spectral methods, a different way to discretize PDEs.

The basic idea of spectral methods The basic idea of spectral methods is simple. Consider a
PDE of the form

Lu = f (3.1)

where L is a differential operator (e.g., L = ∂2

∂x2 , or L = ∂2

∂x2 + ∂2

∂y2
, etc.) and f is a right-hand

side function. We consider a finite-dimensional subspace of functions V spanned by a basis
ψ1, . . . , ψN . A typical choice for V is a space of (trigonometric) polynomials of finite degree.
We seek an approximate solution to the PDE by a linear combination of the ψn, i.e., uN (x) =∑N
n=1 cnψn(x). Plugging uN (x) in the PDE we get the following linear equation in the unknowns

(cn):
N∑
n=1

cnLψn = f. (3.2)

In general the equation will not have a solution, as there is no reason to expect that the original
PDE has a solution in the subspace V . However, we can seek to satisfy equation (3.2) approxi-
mately. Assume that the (ψn)1≤n≤N are an orthonormal family of functions, with respect to some
inner product 〈·, ·〉. Then instead of looking for (cn) that satisfy (3.2), we will require only that the
projection of LuN − f on the subspace V is zero. This is the same as requiring that

N∑
n=1

cn 〈Lψn, ψm〉 = 〈f, ψm〉 ∀m = 1, . . . , N. (3.3)

If we call A the matrix Am,n = 〈Lψn, ψm〉, we end up with a N ×N linear system Ac = f̃ , where
f̃m = 〈f, ψm〉.

Remark 3.1 The equations (3.3) are known as the Galerkin equations. Another approach to converting
(3.2) into a finite set of equations, is to require that equality holds exactly at some specific points (xi)1≤i≤N .
These lead to so-called collocation methods.

In this chapter we will focus on two of the most common choices of basis functions (ψn);
namely the Fourier basis, and the basis of Chebyshev polynomials.

3.1 Fourier approximation of functions

We focus on one-dimensional problems on the domain [−1, 1]. The basis of functions we consider
here is

ψn(x) = eiπnx, n ∈ Z.

These functions are orthonormal with respect to the normalized L2 inner product on [−1, 1], i.e.,

〈ψn, ψm〉 =
1

2

∫ 1

−1
ψn(x)ψm(x) =

{
1 if n = m

0 else.
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Given a function f : [−1, 1]→ R, its truncated Fourier approximation is

f(x) ≈ φN (x) =

N/2∑
n=−N/2

f̂ne
iπnx, x ∈ [−1, 1], (3.4)

where here and elsewhere in this section N ≥ 2 is an even integer and

f̂n = 〈f, ψn〉 =
1

2

∫ 1

−1
f(t)e−iπnt dt, n ∈ Z

are the (Fourier) coefficients of this approximation. We want to analyse the approximation prop-
erties of (3.4). Observe that the basis functions (ψn) are all 2-periodic, and so if we hope to have
convergence we should require f to be 2-periodic. We now recall a basic result from Fourier
analysis giving simple sufficient conditions for the convergence of φN to f .

Theorem 3.2 Assume f : R → R is 2-periodic and Lipschitz continuous. Then φN (x) → f(x) for all
x ∈ R.

If f is assumed smooth enough, then one can show that the Fourier series converges exponen-
tially fast. This is the object of the next theorem.

Theorem 3.3 Assume f : R → R is 2-periodic, and has an analytic continuation into the complex strip
{z ∈ C : −a < Im z < a} on which we further assume |f(z)| ≤ M . Then, the following holds, with
c = e−aπ ∈ (0, 1):

• |f̂n| ≤Mc|n| for all n ∈ Z; and

• maxx∈[−1,1] |f(x)− φN (x)| ≤ 2Mc
1−c c

N/2.

Proof. We start by proving the first bullet point. We know that f̂n = 1
2

∫ 1

−1 f(x)e
−iπnxdx. The key

part of the proof, is to show that f̂n has the following alternative representation, as an integral in
the complex plane:

f̂n = 1
2

∫ 1

−1
f(x+ ia′)e−iπn(x+ia′)dx (3.5)

for any 0 < a′ < a. To prove (3.5), note that since F (z) = f(z)e−iπnz is analytic on the rectangle
[−1, 1]× [−a′, a′] ⊂ C, by Cauchy’s theorem we have

∫
γ
F = 0 where γ is the contour around this

rectangle. Furthermore, since F is 2-periodic, we have
∫
[1,1+ia′]

F = −
∫
[−1+ia′,−1] F . It thus fol-

lows that
∫
[−1,1] F =

∫
[−1+ia′,1+ia′]

F , which proves (3.5). This immediately gives |f̂n| ≤ Meπna
′
,

which proves the desired inequality for n ≤ 0, by letting a′ → a. To prove the inequality for n ≥ 0
we use x− ia′ instead of x+ ia′ in (3.5).

The second statement in the theorem is an immediate corollary of Theorem 3.2 and the first
point. Indeed, for any x ∈ [−1, 1] we can write

|f(x)− φN (x)| = |
∑

|n|>N/2

f̂ne
iπnx| ≤

∑
|n|>N/2

|f̂n| ≤M
∑

|n|>N/2

c|n| =
2Mc

1− c
cN/2.

�
For nonsmooth functions the convergence of the Fourier series can be much slower, see Figures

1 and 2 for example. The general rule is that smoothness of a function controls the decay rate of
f̂n, and thus the convergence rate of φN to f . For functions that are only assumed Ck for some
integer k, one obtains an algebraic decay rateO(N−k′) (where k′ is related to k, typically k′ = k+1)
instead of an exponential rate.

The following definition will be convenient:

Definition 3.4 (Convergence at spectral speed) An N -term approximation φN of a function f
converges to f at spectral speed if ‖φN − f‖ decays faster than O(N−p) for any p = 1, 2, . . ..
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Figure 1: Fourier series approximations of the “square wave” with N = 30. The pronounced
oscillations at the discontinuity points are known as the Gibbs effect.
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Figure 2: Left: Fourier series approximation of the absolute value function on [−1, 1] withN = 10.
We see that convergence is quite slow at the singularity point. Right: Convergence of φN (0) to
f(0) = 0.
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