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Mathematical Tripos Part II: Michaelmas Term 2022

Numerical Analysis – Lecture 12

The algebra of Fourier expansions Let A be the set of all 2-periodic functions f which are
analytic on a horizontal strip {z ∈ C : −a < Im z < a}. Then A is a linear space, i.e., f, g ∈ A and
α ∈ C then f + g ∈ A and αf ∈ A. In particular, with f and g expressed in its Fourier series, i.e.,

f(x) =

∞∑
n=−∞

f̂ne
iπnx, g(x) =

∞∑
n=−∞

ĝne
iπnx

we have

f(x) + g(x) =

∞∑
n=−∞

(f̂n + ĝn)e
iπnx, αf(x) =

∞∑
n=−∞

αf̂ne
iπnx (3.3)

and

f(x) · g(x) =
∞∑

n=−∞

( ∞∑
m=−∞

f̂n−mĝm

)
eiπnx =

∞∑
n=−∞

(
f̂ ∗ ĝ

)
n
eiπnx, (3.4)

where ∗ denotes the convolution operator, hence (̂f ·g)n = (f̂ ∗ ĝ)n. Moreover, if f ∈ A then f ′ ∈ A
and

f ′(x) = iπ

∞∑
n=−∞

n · f̂neiπnx. (3.5)

Since {f̂n} decays exponentially fast, this shows that all derivatives of f have rapidly convergent
Fourier expansions.

Example 3.8 (Application to differential equations) Consider the two-point boundary value prob-
lem: y = y(x), −1 ≤ x ≤ 1, solves

y′′ + a(x)y′ + b(x)y = f(x), y(−1) = y(1), (3.6)

where a, b, f ∈ A and we seek a periodic solution y ∈ A for (3.6). Substituting y, a, b and f by their
Fourier series and using (3.3)-(3.5) we obtain an infinite dimensional system of linear equations
for the Fourier coefficients ŷn:

− π2n2ŷn + iπ

∞∑
m=−∞

mân−mŷm +

∞∑
m=−∞

b̂n−mŷm = f̂n, n ∈ Z. (3.7)

Since a, b, f ∈ A, their Fourier coefficients decrease exponentially fast. Hence, we can truncate
(3.7) into the N -dimensional system

−π2n2ŷn+ iπ

N/2∑
m=−N/2+1

mân−mŷm+

N/2∑
m=−N/2+1

b̂n−mŷm = f̂n, n = −N/2+1, . . . , N/2. (3.8)

Remark 3.9 The matrix of (3.8) is in general dense, but our theory predicts that fairly small values
of N , hence very small matrices, are sufficient for high accuracy. For instance: choosing a(x) =
f(x) = cosπx, b(x) = sin 2πx (which incidentally even leads to a sparse matrix) we get

N = 16 error of size 10−10

N = 22 error of size 10−15 (which is already hitting the accuracy of computer arithmetic )
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Computation of Fourier coefficients (DFT) To form the linear system (3.8), we need to compute
the Fourier coefficients of a(x), b(x), and f(x), i.e., we need to compute integrals of the form:

f̂n =
1

2

∫ 1

−1
f(t)e−iπnt dt, n ∈ Z. (3.9)

Call h(t) = f(t)e−iπnt. If f ∈ A, then so is h. One simple way to approximate the integral of h
on [−1, 1] is using the rectangle rule:

∫ 1

−1
h(t) dt ≈ 2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
. (3.10)

This approximation happens to be exponentially convergent in N .

Theorem 3.10 Let h be a 2-periodic function such that its Fourier series is absolutely convergent. Let
I(h) =

∫ 1

−1 h(t)dt, and for an even integer N , let IN (h) = 2
N

∑N/2
k=−N/2+1 h

(
2k
N

)
. Then

IN (h)− I(h) = 2
∑

r∈Z,|r|≥1

ĥNr. (3.11)

As a consequence, if h is analytic on the horizontal strip {z ∈ C : |Im z| < a} and |h(z)| ≤ M for
|Im z| < a, then by letting c = e−aπ ∈ (0, 1), we have |IN (h)− I(h)| ≤ 4McN/(1− cN ).

Remark 3.11 Another consequence of the expression (3.11) is that IN (h) = I(h) if h is a trigonometric
polynomial of degree < N , i.e., if ĥn = 0 for |n| ≥ N . This is reminiscent of Gaussian quadrature rules
which are exact for polynomials up to degree 2N − 1. For more on the exponential convergence of the
rectangle rule for periodic analytic functions, we refer the interested reader to the following review article
The Exponentially Convergent Trapezoidal Rule, SIAM Review, 2014 by L. N. Trefethen, and J. A. C.
Weideman.

Proof. Let ωN = e2πi/N . Then we have

2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
=

2

N

N/2∑
k=−N/2+1

∞∑
n=−∞

ĥne
2πink/N =

2

N

∞∑
n=−∞

ĥn

N/2∑
k=−N/2+1

ωnkN .

Since ωNN = 1 we have

N/2∑
k=−N/2+1

ωnkN = ω
−n(N/2−1)
N

N−1∑
k=0

ωnkN =

{
N, n ≡ 0 (modN),

0, n 6≡ 0 (modN),

and we deduce that
2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
= 2

∞∑
r=−∞

ĥNr .

Since I(h) = 2ĥ0, we immediately obtain the expression (3.11).
For the second part of the theorem, the analyticity assumption guarantees, that the Fourier

coefficients |ĥn| decay exponentially fast, namely |ĥn| ≤ Mc|N | (see Lecture 11). In this case we
have

2
∑

r∈Z,|r|≥1

|ĥNr| ≤ 4M

∞∑
r=1

cNr = 4McN/(1− cN )

as desired.
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Remark 3.12 Applying the rectangle rule to the integral in (3.9) corresponds to the approximation

f̂n ≈
1

N

N/2∑
k=−N/2+1

f

(
2k

N

)
e−2ikπn/N .

We recognize that the right-hand side, for n = −N/2 + 1, . . . , N/2, corresponds to the discrete
Fourier transform of the sequence (yk) =

(
f( 2kN )

)
. Thus, one can compute the approximations to

f̂n using the FFT algorithm.

Problem 3.13 (The Poisson equation) We consider the Poisson equation

∇2u = f, −1 ≤ x, y ≤ 1, (3.12)

where f is analytic and obeys the periodic boundary conditions

f(−1, y) = f(1, y), −1 ≤ y ≤ 1, f(x,−1) = f(x, 1), −1 ≤ x ≤ 1.

Moreover, we add to (3.12) the following periodic boundary conditions

u(−1, y) = u(1, y), ux(−1, y) = ux(1, y), −1 ≤ y ≤ 1

u(x,−1) = u(x, 1), uy(x,−1) = uy(x, 1), −1 ≤ x ≤ 1.
(3.13)

With these boundary conditions alone, a solution of (3.12) is only defined up to an additive con-
stant. Hence, we add a normalisation condition to fix the constant:∫ 1

−1

∫ 1

−1
u(x, y) dx dy = 0. (3.14)

We have the spectrally convergent Fourier expansion

f(x, y) =

∞∑
k,l=−∞

f̂k,le
iπ(kx+ly)

and seek the Fourier expansion of u

u(x, y) =

∞∑
k,l=−∞

ûk,le
iπ(kx+ly).

Since

0 =

∫ 1

−1

∫ 1

−1
u(x, y) dx dy =

∞∑
k,l=−∞

ûk,l

∫ 1

−1

∫ 1

−1
eiπ(kx+ly) dx dy = û0,0,

and

∇2u(x, y) = −π2
∞∑

k,l=−∞

(k2 + l2)ûk,le
iπ(kx+ly),

together with (3.12), we have ûk,l = −
1

(k2 + l2)π2
f̂k,l, k, l ∈ Z, (k, l) 6= (0, 0)

û0,0 = 0.

Remark 3.14 Applying a spectral method to the Poisson equation is not representative for its
application to other PDEs. The reason is the special structure of the Poisson equation. In fact,
φk,l = eiπ(kx+ly) are the eigenfunctions of the Laplace operator with

∇2φk,l = −π2(k2 + l2)φk,l,

and they obey periodic boundary conditions.
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Problem 3.15 (General second-order linear elliptic PDE) We consider the more general second-
order linear elliptic PDE

∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
= f, −1 ≤ x, y ≤ 1,

with a(x, y) > 0, and a and f periodic. We again impose the periodic boundary conditions (3.13)
and the normalisation condition (3.14). We use the Fourier expansions

g(x, y) =
∑
k,l∈Z

ĝk,le
iπ(kx+ly), h(x, y) =

∑
m,n∈Z

ĥm,ne
iπ(mx+ny),

together with the bivariate versions of (3.4)-(3.5)

(̂g · h)k,l =
∑
m,n∈Z

ĝk−m,l−nĥm,n, (̂gx)k,l = iπk ĝk,l , (̂gy)k,l = iπl ĝk,l ,

(̂hx)m,n = iπm ĥm,n , (̂hy)m,n = iπn ĥm,n .

This gives

−π2
∑
k,l∈Z

∑
m,n∈Z

(km+ ln) âk−m,l−nûm,ne
iπ(kx+ly) =

∑
k,l∈Z

f̂k,le
iπ(kx+ly) .

In the next steps, we truncate the expansions to −N/2 + 1 ≤ k, l,m, n ≤ N/2 and impose the
normalisation condition û0,0 = 0. This results in a system of N2 − 1 linear algebraic equations in
the unknowns ûm,n, where m,n = −N/2 + 1...N/2, and (m,n) 6= (0, 0):

N/2∑
m,n=−N/2+1

(km+ ln) âk−m,l−n ûm,n = − 1

π2
f̂k,l , k, l = −N/2 + 1...N/2 .

Discussion 3.16 (Analyticity and periodicity) The fast convergence of spectral methods rests on
two properties of the underlying problem: analyticity and periodicity. If one is not satisfied the
rate of convergence in general drops to polynomial. However, to a certain extent, we can relax
these two assumptions while still retaining the substantive advantages of Fourier expansions.

• Relaxing analyticity: In general, the speed of convergence of the truncated Fourier series of
a function f depends on the smoothness of the function. In fact, the smoother the function
the faster the truncated series converges, i.e., for f ∈ Cp(−1, 1) we receive an O(N−p) order
of convergence.

• Relaxing periodicity: Disappointingly, periodicity is necessary for spectral convergence. One
way around this is to change our set of basis functions, e.g., to Chebyshev polynomials.
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