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Numerical Analysis – Lecture 13

Chebyshev polynomials The Chebyshev polynomial of degree n is defined as

Tn(x) := cos(n arccosx), x ∈ [−1, 1], (3.14)

or equivalently, by the identity Tn(cos θ) = cos(nθ) for θ ∈ [0, 2π].
1) The sequence (Tn) obeys the three-term recurrence relation

T0(x) ≡ 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1,

in particular, Tn is indeed an algebraic polynomial of degree n, with the leading coefficient 2n−1.
(The recurrence is due to the equality cos(n+1)θ + cos(n−1)θ = 2 cos θ cosnθ via substitution
x = cos θ, expressions for T0 and T1 are straightforward.)

2) Also, (Tn) forms a sequence of orthogonal polynomials with respect to the inner product
(f, g)w :=

∫ 1

−1 f(x)g(x)w(x)dx, with the weight function w(x) := (1− x2)−1/2. Namely, we have

(Tn, Tm)w =

∫ 1

−1
Tm(x)Tn(x)

dx√
1− x2

=

∫ π

0

cosmθ cosnθ dθ =


π, m = n = 0 ,
π
2 , m = n ≥ 1 ,

0, m 6= n .

(3.15)

Chebyshev expansion Since (Tn)∞n=0 forms an orthogonal sequence, a function f such that∫ 1

−1 |f(x)|2w(x) dx <∞ can be expanded in the series

f(x) =

∞∑
n=0

f̆nTn(x),

with the Chebyshev coefficients f̆n. Making inner product of both sides with Tn and using or-
thogonality yields

(f, Tn)w = f̆n(Tn, Tn)w ⇒ f̆n =
(f, Tn)w

(Tn, Tn)w
=
cn
π

∫ 1

−1
f(x)Tn(x)

dx√
1− x2

, (3.16)

where c0 = 1 and cn = 2 for n ≥ 1.
Connection to the Fourier expansion. Letting x = cos tπ and g(t) = f(cos(tπ)), we obtain∫ 1

−1
f(x)Tn(x)

dx√
1− x2

= π

∫ 1

0

f(cos tπ)Tn(cos tπ) dt =
π

2

∫ 1

−1
g(t) cosntπ dt . (3.17)

Given that cosntπ = 1
2 (eintπ + e−intπ), and using the Fourier expansion of the 2-periodic function

g,

g(t) =
∑
n∈Z

ĝneinπt, where ĝn =
1

2

∫ 1

−1
g(t)e−intπ dt, n ∈ Z ,

we continue (3.17) as ∫ 1

−1
f(x)Tn(x)

dx√
1− x2

=
π

2
(ĝ−n + ĝn) ,

and from (3.16) we deduce that

f̆n =

{
ĝ0, n = 0 ,

ĝ−n + ĝn = 2ĝn, n ≥ 1 .
(3.18)
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Discussion 3.17 (Properties of the Chebyshev expansion) As we have seen, for a general inte-
grable function f , the computation of its Chebyshev expansion is equivalent to the Fourier ex-
pansion of the function g(θ) = f(cos θ). Since the latter is periodic with period 2π, we can use a
discrete Fourier transform (DFT) to compute the Chebyshev coefficients f̆n. [Actually, based on
this connection, one can perform a direct fast Chebyshev transform].

Also, if f can be analytically extended from [−1, 1] (to the so-called Bernstein ellipse), then f̆n
decays spectrally fast for n � 1 (with the rate depending on the size of the ellipse). Hence, the
Chebyshev expansion inherits the rapid convergence of spectral methods without assuming that
f is periodic.

Theorem 3.18 Let f be a function on [−1, 1] such that it can be extended analytically to the Bernstein
ellipse in the complex plane

B(a) =

{
z = x+ iy ∈ C :

x2

cosh2(aπ)
+

y2

sinh2(aπ)
< 1

}
(3.19)

where a > 0, and assume furthermore that |f(z)| ≤ M for z ∈ B(a). Then with c = e−aπ ∈ (0, 1), we
have |f̆n| ≤ 2Mcn for n ≥ 1, and |f(x)−

∑N−1
n=0 f̆nTn(x)| ≤ 2McN/(1− c).

Proof. Let g(t) = f(cos(tπ)) = f((eitπ + e−itπ)/2) which is 2-periodic. Let S(a) = {z ∈ C :
|Im z| < a}, and note that

t ∈ S(a) ⇐⇒ cos(tπ) ∈ B(a). (3.20)

(See below for justification.) Since f is assumed analytic on B(a), it follows that g is analytic on
S(a). From the theorem of Lecture 11, we know that |ĝn| ≤Me−aπ|n|, and thus by (3.18), it follows
that |f̆0| ≤M and |f̆n| ≤ 2Me−aπn for n ≥ 1. Furthermore, we have, for any x ∈ [−1, 1]

|f(x)−
N−1∑
n=0

f̆nTn(x)| ≤
∞∑
n=N

|f̆n||Tn(x)| ≤
∞∑
n=N

|f̆n| ≤ 2McN/(1− c)

as desired.
It remains to prove (3.20). For b > 0 and x ∈ R, we have

cos(x+ ib) = 1
2
(ei(x+ib) + e−i(x+ib)) = 1

2
(e−beix + ebe−ix)

and thus Re (cos(x+ ib)) = cosh(b) cos(x) and Im (cos(x+ ib)) = − sinh(b) sin(x). This shows that
{cos(x+ ib) : x ∈ R} is precisely the ellipse of equation x2/ cosh(b)2 + y2/ sinh(b)2 = 1. �
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Figure 1: Bernstein ellipses B(a) as defined in (3.19) or different values of a > 0.
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The algebra of Chebyshev expansions In order to use spectral Galerkin methods with the
Chebyshev basis, we need to understand how Chebyshev expansion behaves under pointwise
multiplication of functions, and differentiation. Starting by the multiplication operation, we see
that

Tm(x)Tn(x) = cos (mθ) cos (nθ)

= 1
2

[ cos ((m− n)θ) + cos ((m+ n)θ)]

= 1
2

[
T|m−n|(x) + Tm+n(x)

]
and hence,

f(x)g(x) =

∞∑
m=0

f̆mTm(x) ·
∞∑
n=0

ğnTn(x) =
1

2

∞∑
m,n=0

f̆mğn
[
T|m−n|(x) + Tm+n(x)

]

=
1

2

∞∑
k=0

Tk(x)

 ∑
m,n≥0
m+n=k

f̆mğn +
∑
m,n≥0
|m−n|=k

f̆mğn

 .

Lemma 3.19 (Derivatives of Chebyshev polynomials) We can express derivatives T ′n in terms of
(Tk) as follows,

T ′2n(x) = (2n) · 2
n∑
k=1

T2k−1(x), (3.21)

T ′2n+1(x) = (2n+ 1)
[
T0(x) + 2

n∑
k=1

T2k(x)] . (3.22)

Proof. From (3.14), we deduce

Tm(x) = cosmθ ⇒ T ′m(x) =
m sinmθ

sin θ
x = cos θ .

So, for m = 2n, (3.21) follows from the identity sin 2nθ
sin θ = 2

∑n
k=1 cos(2k−1)θ, which is verified as

2 sin θ

n∑
k=1

cos (2k−1)θ =

n∑
k=1

2 cos (2k−1)θ sin θ =

n∑
k=1

[
sin 2kθ − sin 2(k − 1)θ

]
= sin 2nθ.

For m = 2n+ 1, (3.22) turns into identity sin(2n+1)θ
sin θ = 1 + 2

∑n
k=1 cos 2kθ, and that follows from

sin θ ·
(

1 + 2

n∑
k=1

cos 2kθ
)

= sin θ +

n∑
k=1

[
sin(2k+1)θ − sin(2k − 1)θ

]
= sin(2n+ 1)θ.

�
The lemma above allows us to express the Chebyshev coefficients of the derivative of a func-

tion f , in terms of those of f . We get

(

f ′ 0 = f̆1 + 3f̆3 + 5f̆5 + · · ·

(

f ′ 1 = 2(2f̆2 + 4f̆4 + 6f̆6 + · · · )

(

f ′ 2 = 2(3f̆3 + 5f̆5 + · · · )

(

f ′ 3 = 2(4f̆4 + 6f̆6 + · · · )
...

In general, for the k’th derivative we get:

(

f (k) n = cn

∞∑
m=n+1
n+m odd

m

(

f (k−1) m, ∀ k ≥ 1,

where c0 = 1 and cn = 2 for n ≥ 1.
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