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Mathematical Tripos Part II: Michaelmas Term 2022

Numerical Analysis — Lecture 14

The spectral method for evolutionary PDEs We consider the problem

%ﬁ’t) = Lu(z,t), xze€[-1,1], t>0, (3.20)
U(I,O) = g(ZC), MRS [_15 1]a

with appropriate boundary conditions on {—1,1} x Ry and where £ is a linear operator (act-
ing on z), e.g., a differential operator. We want to solve this problem by the method of lines
(semi-discretization), using a spectral method for the approximation of u and its derivatives in
the spatial variable z. Then, in a general spectral method, we seek solutions uy (x, t) with

N-1

un(2,t) = Y cn(t) n(2), (3.21)

n=0

where ¢, (t) are expansion coefficients and 1),, are basis functions.
The spectral approximation in space results into a N x N system of ODEs for the expan-
sion coefficients {c, (t)}:
¢ = Be, (3.22)

where B € RY*YN ‘and ¢ = {c,(t)} € RY. We can solve it with standard ODE solvers (Euler,
Crank-Nicholson, etc.) which as we have seen are approximations to the matrix exponential in
the exact solution c(t) = e'P¢(0).

Example 3.23 (The diffusion equation) Consider the diffusion equation for a function v = u(z, t),

{ Ut = Ugy, (l’,t) € [717 1] x R+ ’ (323)

u(z,0) = g(x), x € [-1,1].
with the periodic boundary conditions u(—1,t) = u(1,%), us(—1,t) = uy(1,t), imposed for all

values t > 0.
For each t, we approximate u(z, t) by its N-th order partial Fourier sum in z,

N/2

u(z,t) = un(z,t) = Z TUp (1) €™,
n=—N/2+1

Then, from (3.23), we see that each coefficient u,, fulfills the ODE
al,(t) = —m*n?u, (1), n=-N/2+1,...,N/2. (3.24)

n

Its exact solution is u, (t) = e~ Nt Jn, so that

N/2
2 2, .
~ _—mn"t imnx
UN(xat) = § gn € € )
n=—N/2+1

which is the exact solution truncated to IV terms.

Here, we were able to find the exact solution without solving the ODE numerically due to the
special structure of the Laplacian. However, for more general PDEs we will need a numerical
method for which stability has to be analyzed.

29



Stability analysis The system has the form
u' = Bu, B = diag (—n°n*:n=—-N/24+1,...,N/2).
If we approximate this system with the Euler method:
@ = (I + kB, k= At

then the stability condition becomes || +kB|| < 1. Since B is diagonal, the same is true for [+ kB,
and the diagonal elements are 1 — kn?n? with —N/2 < n < N/2. To have stability, we thus need
1 —kn?(N/2)? > —1,ie, k < 8/(n2N?).

For the trapezoidal rule, the stability condition will be instead ||(I — (k/2)B) = (I +(k/2)B)|| <
1 which is satisfied for all £ > 0, since the spectrum of B is negative.

Example 3.24 (The diffusion equation with non-constant coefficient) We want to solve the dif-
fusion equation with a non-constant coefficient a(x) > 0 for a function u = u(z, t)

{ up = (a(2)uyg), (z,t) € [-1,1] x Ry,

(3.25)
u(z,0) = g(x), xe€[-1,1],

with boundary and normalization conditions as before. Approximating w by its partial Fourier
sum results in the following system of ODEs for the coefficients @,

N/2
a,(t)=-m" Y mnln_min(t), n=-N/2+1,...,N/2.
m=—N/2+1

For the discretization in time we may apply the Euler method, this gives

N/2
~04+1 _ 2 ~ ~¢
u, " =u, —kmw g MN Ay, U

s k=At,
m=—N/2+1

or in the vector form

at = (I+kB)u',

where B = (b, ) = (—m>mnd,,_,,). For stability of Euler method, we again need ||I + kB| < 1.

Matlab demo: See the online demo and its documentation Using Chebyshev Spectral Methods at
http://www.damtp.cam.ac.uk/user/hf323/M21-I1-NA/demos/chebyshev/chebyshev.
html for a simple example of how boundary conditions can be installed.
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