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Numerical Analysis – Lecture 18

4.1 Steepest descent and conjugate gradient methods

For solving Ax = b with a symmetric positive definite matrix A, we consider iterative methods
based on an optimization formulation. Consider the convex quadratic function

F (x) := 1
2
〈x, Ax〉 − 〈b,x〉 (4.5)

where 〈u,v〉 = uT v is the Euclidean inner product. Note that the global minimizer of F is x∗ =
A−1b. Indeed

F (x∗ + h)− F (x∗) = 〈h, Ax∗ − b〉+ 1
2
〈h, Ah〉 ≥ 0

for any h. Observe that F can also be written as

F (x) = 1
2
‖x∗ − x‖2A + constant

where ‖y‖A := 〈y, Ay〉1/2 =
√
yTAy is the A-norm of A. (The constant in the above formulation

is a term that does not depend on x, so it is irrelevant for the purpose of minimizing F , the
constant is 1

2
bTA−1b.)

Gradient/Steepest descent The gradient descent method for minimizing F has iterates

x(k+1) = x(k) − αk∇F (x(k))

where∇F (x(k)) is the gradient of F at x(k), and αk > 0 is the step size. For our quadratic function,
it is easy to verify that

∇F (x(k)) = Ax(k) − b = −r(k)

where r(k) = b−Ax(k) is the residual. There are multiple ways to choose the step size αk:

• Constant step-size αk = α. In this case the iteration takes the form

x(k+1) = x(k) − α(Ax(k) − b) = (I − αA)x(k) + αb

which is nothing but a Jacobi-like iteration with D = α−1I (we say Jacobi-like because the
diagonal of A is not necessarily equal to α−1I). We know from previous lectures that the
method converges iff

ρ(I − αA) < 1 ⇐⇒ |1− αλi| < 1 ∀λi eigenvalues of A ⇐⇒ 0 < α < 2/ρ(A).

For example, assume the eigenvalues of A are all in [l, L] where 0 < l < L. Then one can
choose α = 1/L, and in this case the convergence rate is given by ρ(I − 1

L
A) = 1− l/L, i.e.,

the error ‖x∗−x(k)‖ decays like (1− l/L)k. The quantity L/l ≥ 1 is known as the condition
number of A. We see that, as the condition number grows, the convergence rate becomes
worse and worse.

• Exact line search. Another way to choose the step size αk is using line search. Here αk is
chosen so that it achieves the smallest possible value of F along the search direction, i.e.,
αk = argminα F (x

(k) + αd(k)) where d(k) is the search direction, equal to the negative
gradient. Because our function is quadratic, one can get a closed form expression for the
optimal α.
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Lemma 4.20 Let F be the function defined in (4.5). Let x ∈ Rn, r = b − Ax be the residual and
let d ∈ Rn be a search direction. Then

argmin
α
F (x+ αd) =

〈r,d〉
〈d, Ad〉

. (4.6)

Proof. The function F (x + αd) = F (x) − α〈r,d〉 + α2/2〈d, Ad〉 is quadratic in the single
variable α. The minimum is attained at α s.t. −〈r,d〉+α〈d, Ad〉 = 0 which gives the desired
formula. �

The gradient descent method with exact line search thus takes the form

x(k+1) = x(k) +
‖r(k)‖22
‖r(k)‖2A

r(k),

where we used the fact that the gradient direction is d = −∇F (x(k)) = r(k). It can be shown
that the speed of convergence of the gradient descent with exact line search is, like with the
constant step size, ≈ (1 − l/L)k where 0 < l < L are the smallest and largest eigenvalues
of A. The figure below (left) shows an example of the gradient descent method with exact
line search applied to a two-dimensional quadratic function F . Note the zig-zag behaviour
of the iterates.

Conjugate directions Let’s revisit equation (4.6) for a general direction d (i.e., not necessarily
equal to the negative gradient). Assume x = x(k), and let e(k) = x∗−x(k) be the error and r(k) =
b − Ax(k) = Ae(k) be the residual. Then we can write 〈r(k),d〉 = 〈e(k),d〉A, and so for a general

search direction d with an exact line search, the iterate takes the form x(k+1) = x(k) + 〈e(k),d〉A
〈d,d〉A

d.

By substracting x∗, the iterates in terms of the error e(k+1) are given by:

e(k+1) = e(k) − 〈e
(k),d〉A
〈d,d〉A

d. (4.7)

Geometrically, this means that e(k+1) is the projection of e(k) onto the hyperplane that is A-
orthogonal to d, i.e., we have

〈e(k+1),d〉A = 0 (4.8)

Definition 4.21 (Conjugate directions) The vectors u,v ∈ Rn are conjugate with respect to a sym-
metric positive definite matrix A if they are nonzero and A-orthogonal: 〈u,v〉A := 〈u, Av〉 = 0.

The observation above allows us to prove the following important result.
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Theorem 4.22 Let d(0),d(1), . . . ,d(n−1) be n pairwise conjugate directions, and consider the sequence of
iterates

x(k+1) = x(k) + αkd
(k), αk =

〈r(k),d(k)〉
〈d(k), Ad(k)〉

.

Let r(k) = b−Ax(k) be the residual. Then for each k = 1, . . . , n, r(k) is orthogonal to span{d(0), . . . ,d(k−1)}.
In particular r(n) = 0.

Proof. Since r(k) = Ae(k), it suffices to show that e(k) is A-orthogonal to span{d(0), . . . ,d(k−1)}.
The proof is by induction on k. For k = 0 there is nothing to prove. Assume the statement is
true for k ≥ 0, and consider the equation (4.7) (with d = d(k)). From the induction hypothesis,
and the fact that the d(i) are pairwise conjugate directions, we see that e(k+1) is A-orthogonal to
d(0), . . . ,d(k−1). Furthermore, we have already seen in (4.8) that 〈e(k+1),d(k)〉A = 0. Thus this
shows that e(k+1) is A-orthogonal to d(0), . . . ,d(k) as desired. �

So, if a sequence (d(k)) of conjugate directions is at hands, we have an iterative procedure
with good approximation properties. In the conjugate gradient method, the (A-orthogonal) basis
of conjugate directions is constructed by A-orthogonalization of the sequence of gradients of F at
the x(k); or equivalently the sequence of residuals {r(0), . . . , r(k)}.
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