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Mathematical Tripos Part II: Michaelmas Term 2022

Numerical Analysis — Lecture 20

Convergence of CG The following theorem gives an important characterization of the CG method.

Theorem 4.33 Let A be symmetric positive definite. After k iterations of the conjugate gradient method,
the error e%) = x* — () satisfies

1|4 = min || P(4)e ||
k

where the minimization is over all polynomials Py, of degree < k that satisfy Pr(0) = 1.

Proof. We know from Lecture 18, Theorem 4.22 that e(*) is A-orthogonal tospan{d®, ..., d"*~1}.
It is also easy to see that e®) — e(®) is in span{d(o), ., dF DY (see e.g., Equation (4.7) in Lecture
18, with d = d(k)). Thus if we write

e = (e —e)) 4 e (4.11)
we see that e(?) —e(¥) is the A-orthogonal projection of e(®) on the subspace span{d?, ..., d* "V},
and that
le™ |4 = min [le© —v]l4
where the minimization is over all v € Span(d(o), cee d(k_l)), see figure below.
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Figure 1: Geometric representation of (4.11). Orthogonality here is with respect to the A-inner
product.

Since span(d'?, ..., d* V) = span(r@ ..., A¥17(0), and since r(©) = Ae(®), this means that
any such v canbe writtenasv = Y1 ¢;A%e(0), i.e., e —v = P,(A)e® with P, (t) = 1-3F_, i’
is a degree k polynomial with P (0) = 1. a

Remark 4.34 If A has s distinct eigenvalues Ay, ..., As > 0, then with Py(t) = [[;_, (1 — t/\;) we have

deg Ps = s, P5(0) = 1, and Ps(A) = 0. Thus this shows that the CG method terminates after s iterations,
recovering the result of Theorem 4.29.

Corollary 4.35 Let A be symmetric positive definite, and assume that all its eigenvalues lie in (I, L] where
0 < I < L. Then after k iterations of the conjugate gradient method, the error e*) = z* — x¥) satisfies

L—+1
e®la <2044 <200~ VITD e @as p= Ve <1.

Proof. First note that for any polynomial P, we have

|1P(A)el? 4 < ( max |Pk()\)|> (EA

AEspec(A)
where spec(A) is the set of eigenvalues of A (its spectrum). To see why, let wy,...,w, be an
orthogonal basis of eigenvectors of A such that e!®) = 3. w,. Since the w; are eigenvectors
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of A, they are also pairwise orthogonal with respect to the A-inner product, and so [|e(?]% =
>, lwi||4. In addition Py (A)e® = 3. P.(\)w; and so

152 (A —HZPk szIA—ZIPk )P llwall%

< ( max  [Po(V)| ) 1@

Aéespec(A)

as desired.
We know that the eigenvalues of A are all in [I, L], so we consider the problem of finding the
polynomial P;, of degree k, such that P;(0) = 1, and that minimizes the value

P,
Irg[%]l % ()]

We take Py, = T}, where T} is the Chebyshev polynomial on the interval [{, L], which is obtained
by dilation and translation of the standard Chebyshev polynomial 7}, given on the interval [-1, 1],

namely
Pk(x)—Tk( >/Tk<L+l>.

This polynomial satisfies Py (0) = 1, and since |Tk (t)] <1forallt e [-1,1], we have

L+1\|"
()
for all z € [I, L]. The Chebyshev polynomial satisfies the following inequality for all |¢| > 1:

T(t) > % (t+ Ve - 1)k

By taking t = (L +1)/(L —1), we see thatt + vt? — 1 = f“/ , which gives us the desired bound

| Py ()] <

Vo e [l, L], |Pe(z)| <2 (‘E— ﬂ)

VL+ VI
O
For a symmetric positive definite matrix A, let k(A) = :\\““?7"((2)) > 1 be its condition number. We
saw that the convergence rate of the steepest descent method is ~ (1 — ﬁ)k, whereas the CG

k
method achieves the better rate of ( 1-— 1(A)> .
K

Remark 4.36 The condition number defined above can be written as k(A) = ||A||2||A~1|2 where || - ||2 is
the operator norm of A. This quantity measures the sensitivity of the matrix inverse operation, in a relative
error sense. Let ¢(A) = A~1 be the matrix inverse operation, and consider a perturbation A = A + H.
The relative sensitivity is defined as:

||q5([1) — o(A)|l2/l|6(A)ll2  output relative error

A — All2/||All2 input relative error -

One can show that for H small, this quantity is bounded above by k(A).

Preconditioning In Az = b, we change variables, z = PTZ, where P is a nonsingular n x n
matrix, and multiply both sides with P. Thus, instead of Az = b, we are solving the linear system

PAPTZ=Pb < Az =b. (4.12)
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Note that symmetry and positive definiteness of A imply that A= PAPT is also symmetric and
positive definite since (Ay, y) = (PAPTy,y) = (APTy, PTy) > 0. Therefore, we can apply con-
jugate gradients to the new system. This results in the solution Z, hence x = PTZ. This procedure
is called the preconditioned conjugate gradient method and the matrix P is called the preconditioner.

The main idea of preconditioning is to pick P in (4.12) so that k(A) is much smaller than «(A),
thus accelerating convergence. Ideally, one would like to choose P so that PAPT = I, however
this amounts to inverting A! Instead, we look for an approximation S of A that is easy to invert,
or Cholesky-factorize. If we let S = LL” this Cholesky factorization, and take P = L~!, then
PAPT = L7YAL~T ~ I. Possible choices of S include:

1. The simplest choice of S is D = diag A, then P = D~/2 in (4.12).

2. Another possibility is to choose S as a band matrix with small bandwidth. For example,
solving the Poisson equation with the five-point formula, we may take S to be the tridiago-
nal part of A.

Example 4.37 Consider the tridiagonal system Ax = b, and let S be defined by:

2 -1 1-1 1

-1 2 . -1 2 . -1 1
. , S= . .
T | oo —1

-1 2 -1 2 -1 1

A= =LL", with L=

The matrix S coincides with A except at the (1, 1)-entry and happens to have a simple Cholesky
factorization S = LLT. Using P = L1, we note that PAPT has only two distinct eigenvalues,
and so the CG method converges in two iterations. Indeed, PAPT = P(S + ejel)PT = I + ww’
where w = L~ 'e; is a rank-1 perturbation of the identity matrix, with all eigenvalues but one
equal to 1 (the other one is equal to 1 + [Jw||3).
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