Mathematical Tripos Part II: Michaelmas Term 2022 Numerical Analysis – Lecture 20

Convergence of CG The following theorem gives an important characterization of the CG method.

Theorem 4.33 Let A be symmetric positive definite. After k iterations of the conjugate gradient method, the error $e^{(k)} = x^* - x^{(k)}$ satisfies

$$\|\boldsymbol{e}^{(k)}\|_{A} = \min_{P_{k}} \|P_{k}(A)\boldsymbol{e}^{(0)}\|_{A}$$

where the minimization is over all polynomials P_k of degree $\leq k$ that satisfy $P_k(0) = 1$.

Proof. We know from Lecture 18, Theorem 4.22 that $e^{(k)}$ is *A*-orthogonal to span $\{d^{(0)}, \ldots, d^{(k-1)}\}$. It is also easy to see that $e^{(k)} - e^{(0)}$ is in span $\{d^{(0)}, \ldots, d^{(k-1)}\}$ (see e.g., Equation (4.7) in Lecture 18, with $d = d^{(k)}$). Thus if we write

$$e^{(0)} = (e^{(0)} - e^{(k)}) + e^{(k)}$$
(4.11)

we see that $e^{(0)} - e^{(k)}$ is the *A*-orthogonal projection of $e^{(0)}$ on the subspace span{ $d^{(0)}, \ldots, d^{(k-1)}$ }, and that

$$\|e^{(k)}\|_A = \min_{v} \|e^{(0)} - v\|_A$$

where the minimization is over all $v \in \text{span}(d^{(0)}, \dots, d^{(k-1)})$, see figure below.

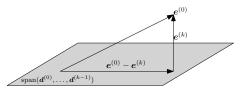


Figure 1: Geometric representation of (4.11). Orthogonality here is with respect to the *A*-inner product.

Since span($d^{(0)}, \ldots, d^{(k-1)}$) = span($r^{(0)}, \ldots, A^{k-1}r^{(0)}$), and since $r^{(0)} = Ae^{(0)}$, this means that any such v can be written as $v = \sum_{i=1}^{k} c_i A^i e^{(0)}$, i.e., $e^{(0)} - v = P_k(A)e^{(0)}$ with $P_k(t) = 1 - \sum_{i=1}^{k} c_i t^i$ is a degree k polynomial with $P_k(0) = 1$.

Remark 4.34 If A has s distinct eigenvalues $\lambda_1, \ldots, \lambda_s > 0$, then with $P_s(t) = \prod_{i=1}^s (1 - t/\lambda_i)$ we have deg $P_s = s$, $P_s(0) = 1$, and $P_s(A) = 0$. Thus this shows that the CG method terminates after s iterations, recovering the result of Theorem 4.29.

Corollary 4.35 Let A be symmetric positive definite, and assume that all its eigenvalues lie in [l, L] where 0 < l < L. Then after k iterations of the conjugate gradient method, the error $e^{(k)} = x^* - x^{(k)}$ satisfies

$$\|\boldsymbol{e}^{(k)}\|_{A} \le 2\rho^{k} \|\boldsymbol{e}^{(0)}\|_{A} \le 2(1-\sqrt{l/L})^{k} \|\boldsymbol{e}^{(0)}\|_{A}, \qquad \rho = \frac{\sqrt{L}-\sqrt{l}}{\sqrt{L}+\sqrt{l}} < 1.$$

Proof. First note that for any polynomial P_k we have

$$\|P_k(A)\boldsymbol{e}^{(0)}\|_A \le \left(\max_{\lambda \in \operatorname{spec}(A)} |P_k(\lambda)|\right) \|\boldsymbol{e}^{(0)}\|_A$$

where spec(A) is the set of eigenvalues of A (its spectrum). To see why, let w_1, \ldots, w_n be an orthogonal basis of eigenvectors of A such that $e^{(0)} = \sum_i w_i$. Since the w_i are eigenvectors

of *A*, they are also pairwise orthogonal with respect to the *A*-inner product, and so $\|\boldsymbol{e}^{(0)}\|_A^2 = \sum_i \|\boldsymbol{w}_i\|_A^2$. In addition $P_k(A)\boldsymbol{e}^{(0)} = \sum_i P_k(\lambda_i)\boldsymbol{w}_i$ and so

$$\|P_{k}(A)\boldsymbol{e}^{(0)}\|_{A}^{2} = \|\sum_{i} P_{k}(\lambda_{i})\boldsymbol{w}_{i}\|_{A}^{2} = \sum_{i} |P_{k}(\lambda_{i})|^{2} \|\boldsymbol{w}_{i}\|_{A}^{2}$$
$$\leq \left(\max_{\lambda \in \operatorname{spec}(A)} |P_{k}(\lambda)|^{2}\right) \|\boldsymbol{e}^{(0)}\|_{A}^{2}$$

as desired.

We know that the eigenvalues of *A* are all in [l, L], so we consider the problem of finding the polynomial P_k of degree *k*, such that $P_k(0) = 1$, and that minimizes the value

$$\max_{x \in [l,L]} |P_k(x)|.$$

We take $P_k = T_k^*$, where T_k^* is the Chebyshev polynomial on the interval [l, L], which is obtained by dilation and translation of the standard Chebyshev polynomial T_k given on the interval [-1, 1], namely

$$P_k(x) = T_k \left(2\frac{L-x}{L-l} - 1 \right) / T_k \left(\frac{L+l}{L-l} \right)$$

This polynomial satisfies $P_k(0) = 1$, and since $|T_k(t)| \le 1$ for all $t \in [-1, 1]$, we have

$$|P_k(x)| \le \left|T_k\left(\frac{L+l}{L-l}\right)\right|^{-1}$$

for all $x \in [l, L]$. The Chebyshev polynomial satisfies the following inequality for all $|t| \ge 1$:

$$T_k(t) \ge \frac{1}{2} \left(t + \sqrt{t^2 - 1} \right)^k.$$

By taking t = (L+l)/(L-l), we see that $t + \sqrt{t^2 - 1} = \frac{\sqrt{L} + \sqrt{l}}{\sqrt{L} - \sqrt{l}}$, which gives us the desired bound

$$\forall x \in [l, L], |P_k(x)| \le 2 \left(\frac{\sqrt{L} - \sqrt{l}}{\sqrt{L} + \sqrt{l}}\right)^k.$$

For a symmetric positive definite matrix A, let $\kappa(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} > 1$ be its *condition number*. We saw that the convergence rate of the steepest descent method is $\approx (1 - \frac{1}{\kappa(A)})^k$, whereas the CG method achieves the better rate of $\left(1 - \frac{1}{\sqrt{\kappa(A)}}\right)^k$.

Remark 4.36 The condition number defined above can be written as $\kappa(A) = ||A||_2 ||A^{-1}||_2$ where $|| \cdot ||_2$ is the operator norm of A. This quantity measures the sensitivity of the matrix inverse operation, in a relative error sense. Let $\phi(A) = A^{-1}$ be the matrix inverse operation, and consider a perturbation $\tilde{A} = A + H$. The relative sensitivity is defined as:

$$\frac{\|\phi(A) - \phi(A)\|_2 / \|\phi(A)\|_2}{\|\tilde{A} - A\|_2 / \|A\|_2} = \frac{\text{output relative error}}{\text{input relative error}}.$$

One can show that for H small, this quantity is bounded above by $\kappa(A)$.

Preconditioning In $A\mathbf{x} = \mathbf{b}$, we change variables, $\mathbf{x} = P^T \hat{\mathbf{x}}$, where *P* is a nonsingular $n \times n$ matrix, and multiply both sides with *P*. Thus, instead of $A\mathbf{x} = \mathbf{b}$, we are solving the linear system

$$PAP^T \hat{\boldsymbol{x}} = P\boldsymbol{b} \quad \Leftrightarrow \quad \widehat{A}\widehat{\boldsymbol{x}} = \widehat{\boldsymbol{b}}.$$
(4.12)

Note that symmetry and positive definiteness of A imply that $\hat{A} = PAP^T$ is also symmetric and positive definite since $\langle \hat{A} \boldsymbol{y}, \boldsymbol{y} \rangle = \langle PAP^T \boldsymbol{y}, \boldsymbol{y} \rangle = \langle AP^T \boldsymbol{y}, P^T \boldsymbol{y} \rangle > 0$. Therefore, we can apply conjugate gradients to the new system. This results in the solution $\hat{\boldsymbol{x}}$, hence $\boldsymbol{x} = P^T \hat{\boldsymbol{x}}$. This procedure is called the *preconditioned conjugate gradient method* and the matrix P is called the *preconditioner*.

The main idea of preconditioning is to pick P in (4.12) so that $\kappa(\widehat{A})$ is much smaller than $\kappa(A)$, thus accelerating convergence. Ideally, one would like to choose P so that $PAP^T = I$, however this amounts to inverting A! Instead, we look for an approximation S of A that is easy to invert, or Cholesky-factorize. If we let $S = LL^T$ this Cholesky factorization, and take $P = L^{-1}$, then $PAP^T = L^{-1}AL^{-T} \approx I$. Possible choices of S include:

- 1. The simplest choice of *S* is D = diag A, then $P = D^{-1/2}$ in (4.12).
- 2. Another possibility is to choose *S* as a band matrix with small bandwidth. For example, solving the Poisson equation with the five-point formula, we may take *S* to be the tridiagonal part of *A*.

Example 4.37 Consider the tridiagonal system Ax = b, and let S be defined by:

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}, \quad S = \begin{bmatrix} 1 & -1 \\ -1 & 2 & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix} = LL^T, \text{ with } L = \begin{bmatrix} 1 & & \\ -1 & 1 & & \\ & \ddots & \ddots & \\ & & -1 & 1 \end{bmatrix}.$$

The matrix *S* coincides with *A* except at the (1, 1)-entry and happens to have a simple Cholesky factorization $S = LL^T$. Using $P = L^{-1}$, we note that PAP^T has only two distinct eigenvalues, and so the CG method converges in two iterations. Indeed, $PAP^T = P(S + e_1e_1^T)P^T = I + ww^T$ where $w = L^{-1}e_1$ is a rank-1 perturbation of the identity matrix, with all eigenvalues but one equal to 1 (the other one is equal to $1 + ||w||_2^2$).