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Numerical Analysis – Lecture 21

5 Eigenvalues and eigenvectors

We consider in this chapter the problem of computing eigenvalues and eigenvectors of matrices.
Let A be a real n×n matrix. The eigenvalue equation is Aw = λw, where λ is a scalar, which may
be complex in general, and w is a nonzero vector. If A is diagonalizable, then the eigenvectors
form a basis of Rn. If A is symmetric, we know that the eigenvalues are all real, and that the
eigenvectors form an orthonormal basis of Rn.

We start by describing algorithms to compute a single eigenvalue/eigenvector pair for A. In
this chapter we use ‖ · ‖ to denote the Euclidean norm on Cn, i.e.,

‖x‖2 = x∗x =

n∑
i=1

|xi|2.

5.1 Power method

The iterative algorithms that will be studied for the calculation of eigenvalues and eigenvectors
are all closely related to the power method, which has the following basic form for generating a
single eigenvalue and eigenvector of A. We pick a nonzero vector x(0) in Rn. Then, for k =
0, 1, 2, . . ., we let x(k+1) be a nonzero multiple of Ax(k), so that ‖x(k+1)‖ = 1.

POWER ITERATION: for k = 0, 1, 2, . . .

• Set y = Ax(k)

• x(k+1) = y/‖y‖

The next theorem shows that the sequence x(k) converges to an eigenvector of A associated
with the largest eigenvalue in modulus, provided all the other eigenvalues of A have strictly
smaller magnitude. Observe that the eigenvectors of A are only specified up to a scalar multiple,
and for this reason, the theorem below studies the distance between x(k) and the linear span of
w1, where w1 is an eigenvector of A (instead of just the distance ‖x(k) −w1‖). If x and w are two
vectors in Cn with unit Euclidean length, then it is easy to check that

dist(x, span(w))2 = min
α∈C
‖x− αw‖2 = 1− |x∗w|2, (5.1)

which is attained at α = w∗x.

Theorem 5.1 Assume A ∈ Cn×n is diagonalizable and that its eigenvalues can be ordered in such a way
that |λ1| > |λ2| ≥ · · · ≥ |λn|. Let wi ∈ Cn be the corresponding eigenvectors ofAwith ‖wi‖=1. Assume
x(0) =

∑n
i=1 ciwi with c1 6=0. Then dist(x(k), span(w1)) = O(ρk) as k →∞, where ρ = |λ2/λ1| < 1.

Proof. Observe that x(k) is a multiple ofAkx(0), which according to the decomposition of x(0) can
be written as

Akx(0) =

n∑
i=1

ciλ
k
iwi = c1λ

k
1

(
w1 +

n∑
i=2

ci
c1

( λi
λ1

)k
wi

)
= c1λ

k
1(w1 + v(k)) (5.2)

where v(k) =
∑n
i=2(ci/c1)(λi/λ1)kwi. By our assumptions we know that ‖v(k)‖ → 0 as k → ∞,

more precisely ‖v(k)‖ = O(ρk). Since ‖x(k)‖ = 1, and x(k) is proportional to Akx(0), we can write
using (5.2)

x(k) = sk
w1 + v(k)

‖w1 + v(k)‖
(5.3)
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where sk = c1λ
k
1/|c1λk1 |which satisfies |sk| = 1. Thus we get

|w∗1x(k)|2 =
|1 + w∗1v

(k)|2

‖w1 + v(k)‖2
= 1 +

|w∗1v(k)|2 − ‖v(k)‖2

‖w1 + v(k)‖2
= 1 +O(ρ2k).

From (5.1), we get dist(x(k), span(w1))2 = 1− |w∗1x(k)|2 = O(ρ2k) as desired. �

Rayleigh quotient The convergence theorem above shows convergence of x(k) to an eigenvec-
tor of A. What about the eigenvalue? The following definition will be important for the rest of
this chapter.

Definition 5.2 The Rayleigh quotient of A at a nonzero vector x ∈ Cn is defined by

r(x) =
x∗Ax

x∗x
. (5.4)

If Ax = λx then clearly r(x) = λ. In general, r(x) = arg minµ∈C ‖Ax− µx‖22, since ‖Ax− µx‖22 =
|µ|2x∗x− 2Re [µ̄x∗Ax] + ‖Ax‖2, which is minimized precisely at µ = r(x). One can show, using
the proof of the theorem above, that the sequence of Rayleigh quotients r(x(k)) converges to
λ1 at the rate O(ρk). Indeed, from (5.3), we have x(k)/sk = w1+v(k)

‖w1+v(k)‖ with |sk| = 1, so that

r(x(k)) = r(x(k)/sk) = 1
‖w1+v(k)‖2 (w1 + v(k))∗A(w1 + v(k))→ λ1 at the rate O(ρk).

Deficiencies of the power method The power method may perform adequately if c1 6= 0 and
|λ1| > |λ2|, but often it is unacceptably slow. Moreover, |λ1| = |λ2| is not uncommon when A is
real and nonsymmetric, because the spectral radius of A may be due to a complex conjugate pair
of eigenvalues. Next, we will study the inverse iteration with shifts, which will allow us to speed
up the convergence of the power method.

5.2 Inverse iteration

Inverse iteration is the power method applied to the matrix (A− sI)−1, for some shift s ∈ R. The
eigenvalues of (A−sI)−1 are equal to 1

λi−s where λi are the eigenvalues ofA, and the eigenvectors
are the same as those of A. Let λ be the eigenvalue of A closest to s, and let λ′ be the eigenvalue
second-closest to s, so that |λ − s| < |λ′ − s|. Then, from the analysis of the power method, we
know that inverse iteration will converge to an eigenvector of λwith rate ρk, where ρ = |λ−s|

|λ′−s| < 1.

INVERSE ITERATION: for k = 0, 1, 2, . . .

• Solve (A− sI)y = x(k) (in y, using e.g., LU decomposition)

• x(k+1) = y/‖y‖

The advantage of inverse iteration is the choice of the parameter s: if we have a good estimate
of the eigenvalue λ, then the iterations converge very fast.

5.3 Rayleigh quotient iteration

A natural estimate for the eigenvalue λ at iteration k is the Rayleigh quotient r(x(k)). In Rayleigh
quotient iteration, we update the shift at each iteration by the Rayleigh quotient, namely:

RAYLEIGH QUOTIENT ITERATION: for k = 0, 1, 2, . . .

• sk = r(x(k))

• Solve (A− skI)y = x(k)

• x(k+1) = y/‖y‖

In practice, the convergence of Rayleigh quotient iteration is extremely fast.
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Example 5.3 Consider the matrix

A =


2 −1

−1 2
. . .

. . . . . . −1

−1 2


with n = 5, and the initial vector x(0) = (1, . . . , 1)/

√
5. We know that the eigenvalues of A are equal

to 4 sin2(`π/(2(n + 1))), ` = 1, . . . , n, and that the eigenvectors correspond to sinusoidal vectors with
frequencies ` = 1, . . . , n. The initial vector x(0) here is constant, so it makes sense to think that the Rayley
quotient iteration will converge to the eigenvalue corresponding to the smallest frequency, i.e., ` = 1, which
in this case is 4 sin2(π/12) ≈ 0.267949192431. After 3 iterations of Rayleigh quotient iteration we obtain
the approximation 0.267949192649 which is correct up to 9 digits!
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