
Dr H. Fawzi

Mathematical Tripos Part II: Michaelmas Term 2022

Numerical Analysis – Lecture 23

QR iteration with shifts In the last lecture we introduced simultaneous iteration as a generalization of the
power method to multiple orthogonal vectors. When the number of such vectors is p = n (the dimension of
the space), we saw that simultaneous iteration can also be seen as a generalization of inverse iteration. More
precisely, we saw that if X(k) is the sequence of orthogonal matrices produced by simultaneous iteration,
then

X
(k)
1 =

AkX
(0)
1

‖AkX
(0)
1 ‖2

and X(k)
n =

A−kX
(0)
n

‖A−kX
(0)
1 ‖2

.

We know from Lecture 21 that the convergence of inverse iteration can be significantly improved if we
update the shift s at each iteration, such as in the Rayleigh Quotient Iteration. This motivates us to consider
the following shifted version of simultaneous iteration.

SHIFTED SIMULTANEOUS ITERATION
Let X(0) = I
For k = 0, 1, 2, . . .

• Compute shift sk (eg sk = (X
(k)
n)TAX

(k)
n)

• Y = (A− skI)X(k)

• [X(k+1), R] = qr(Y)

As mentioned in the previous lecture, this algorithm can be rewritten in terms of the matrices A(k) =
(X(k))TAX(k) instead of X(k).

SHIFTED QR ITERATION
Let A(0) = A
For k = 0, 1, 2, . . .

• Compute shift sk (e.g., sk = A
(k)
nn)

• [Q,R] = qr(A(k) − skI)

• A(k+1) = QTA(k)Q = RQ+ skI

One can prove the formal equivalence between these two algorithms in exactly the same way it was
done in Lecture 22, via induction. Note that the matrix X(k) in simultaneous iteration can be obtained as
the product of the orthogonal matrices Q in the QR iteration.

Using the shifting strategy above, we expect the last row of X(k) to converge very quickly to an eigen-
vector of A; equivalently, this means that the last row of A(k) = (X(k))TAX(k) converges very quickly to
the vector (0, . . . , 0, λ) where λ is an eigenvalue of A. Once we have convergence, the matrix A(k) becomes
block diagonal, i.e., it can be written as

A(k) =

0

Â
...
0

0 . . . 0 λ

 .
In this case, we need only focus on the matrix Âwhich is of size (n−1)× (n−1). This is the idea of deflation,
and leads us to the following algorithm. We use the convenient Matlab-style notations 1 : k for the set
{1, . . . , k}, and M [I, J] to be the submatrix with row indices I and column indices J .

47

QR ITERATION WITH SHIFTS AND DEFLATION
Input: symmetric matrix A0

Initialize A = A0 (upon termination, A will hold the eigenvalues of A0)
Initialize X = In (upon termination, X will hold the matrix of eigenvectors)
For j = n, n− 1, . . . , 2

• While ‖A[j, 1 : j − 1]‖ ≥ ε (i.e., while A[j, 1 : j − 1] is “numerically” nonzero)
– Let s = Ajj (shift)
– [Q,R] = qr (A[1 : j, 1 : j]− sIj)
– A[1 : j, 1 : j] = RQ+ sIj

– X = X ·
[
Q 0
0 In−j

]
(update X)

Upon termination of the algorithm, the matrix A has been reduced to a diagonal matrix containing the
eigenvalues, and the matrix X contains the eigenvectors of A0, so that A0 = XAXT .

Remark 5.15 In the above algorithm we always deflate the last row/column of the matrix for simplicity, and because
it is the one that generally has the fastest convergence. However in practice it is useful to check for other rows/columns
that can also be deflated, i.e., other rows i such that |Aij | ≤ ε for j 6= i.

Reduction to tridiagonal matrices Computing a QR factorization of a n× n matrix requires ≈ n3 floating
point operations. If the algorithm above performs a QR factorization for each j = n, . . . , 2 then the cost of
the algorithm scales like n4.

To remedy this high computational cost, one first starts by putting A into tridiagonal form by an or-
thogonal transformation, before calling the QR iteration algorithm. Recall that a symmetric matrix A is
tridiagonal if Aij = 0 whenever |i − j| > 1. There are two reasons why tridiagonal structure is advanta-
geous:

• Computing the QR factorization of a symmetric tridiagonal matrix can be done in O(n) operations,
using Givens rotations.

• The QR iterations preserve the tridiagonal structure.

We start by proving the second point:

Proposition 5.16 Assume that A is a n × n symmetric tridiagonal matrix, and consider one step of shifted QR
iteration: A+ = RQ+ sI where [Q,R] = qr(A− sI). Then A+ is symmetric tridiagonal.

Proof. Since A − sI is tridiagonal, it is easy to verify that Qij = 0 if i > j + 1.1 It thus follows that
(A+)ij = (RQ + sI)ij = 0 if i > j + 1. Since A+ is symmetric we must also have (A+)ij = 0 if j > i + 1.
This means that A+ is tridiagonal. �

Proposition 5.17 The QR factorization of a symmetric tridiagonal matrix A can be computed in O(n) operations
using Givens rotations.

Sketch of proof. We apply sequentially Givens rotation matrices Ω[i,i+1] that annihilate the (i, i + 1) entry
below the diagonal. After applying n− 1 such rotation matrices we arrive at the upper triangular matrix R.
Note that applying a single Givens rotation matrix requires a constant number of floating point operations
since A is tridiagonal and has only at most 3 nonzero elements per row. Thus the total cost of the algorithm
is O(n). Schematically:

A =

∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

Ω[1,2]×→

• • • 0
0 • • 0
0 ∗ ∗ ∗
0 0 ∗ ∗

Ω[2,3]×→

∗ ∗ ∗ 0
0 • • •
0 0 • •
0 0 ∗ ∗

Ω[3,4]×→

∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 • •
0 0 0 •

 = R

The ’•’ indicate the entries that get modified at each iteration. Note that the resulting upper triangular R
satisfies Rij = 0 when i < j − 2. �

1Indeed, since the jth column of Q is a linear combination of the columns 1, . . . , j of A − sI , and since A − sI is tridiagonal, we
get that Qij = 0 for i > j + 1.

48

