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Numerical Analysis – Lecture 2
Finite-difference discretization of∇2u = f replaces the PDE by a large system of linear equations. Recall

the five-point formula, from last lecture which results in the approximation

h2∇2u(x, y) ≈ u(x− h, y) + u(x+ h, y) + u(x, y − h) + u(x, y + h)− 4u(x, y) . (1.5)

For the sake of simplicity, we restrict our attention to the important case of Ω being a unit square, where
h= 1

M+1 for some positive integer M . Thus, we estimate the M2 unknown function values u(ih, jh)Mi,j=1

(where (ih, jh) ∈ Ω) by letting the right-hand side of (1.5) equal h2f(ih, jh) at each value of i and j. This
yields an N ×N system of linear equations with N = M2 unknowns ui,j :

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = h2f(ih, jh) . (1.6)

(Note that when i or j is equal to 1 or M , then the values u0,j , ui,0 or ui,M+1, uM+1,j are known boundary
values and they should be moved to the right-hand side, thus leaving fewer unknowns on the left.) Having
ordered grid points, we can write (1.6) as a linear system, say

Au = b .

Our present concern is to prove that, as h → 0, the numerical solution (1.6) tends to the exact solution of
the Poisson equation∇2u = f (with appropriate Dirichlet boundary conditions).

The way the matrix A of this system looks depends of course on the way how the grid points (ih, jh)
are being assembled in the one-dimensional array. A natural ordering is to take the grid points arranged by
columns. Then A is the following block tridiagonal matrix:

A =


H I
I H I

. . .
. . .

. . .
I H I

I H

 , H =


−4 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 −4

 .

Before heading on let us prove the following simple but useful theorem whose importance will become
apparent in the course of the lecture.

Theorem 1.8 (Gershgorin theorem) All eigenvalues of an n×n matrix A are contained in the union of the Gersh-
gorin discs in the complex plane:

σ(A) ⊂ ∪ni=1Γi , Γi := {z ∈ C : |z − aii| ≤ ri}, ri :=
∑
j 6=i |aij | .

Proof. For any matrix A, if Ax = λx and |xi| = max |xj |, then the ith equation of the relation Ax = λx
gives

|λ− aii| · |xi| =
∣∣∣∑
j 6=i

aijxj

∣∣∣ ≤∑
j 6=i

|aij ||xj | ≤ |xi|
∑
j 6=i

|aij | =: |xi| ri ,

and after dividing by |xi|we obtain |λ− aii| ≤ ri. So, for any eigenvalue λ of A, the inequality |λ− aii| ≤ ri
is valid for at least one value of i, hence the theorem. �

Lemma 1.9 For any ordering of the grid points, the matrix A of the system (1.6) is symmetric and negative definite.

Proof. Equation (1.6) implies that if aij 6= 0 for i 6= j, then the i-th and j-th points of the grid (ph, qh), are
nearest neighbours. Hence aij 6= 0 implies aij = aji = 1, which proves the symmetry of A. Therefore A has
real eigenvalues and eigenvectors.
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It remains to prove that all the eigenvalues are negative. The arguments are parallel to the proof of
Gershgorin theorem. Let Ax = λx, and let i be an integer such that |xi| = max |xj |. With such an i we
address the following identity (which is a reordering of the equation (Ax)i = λxi):∣∣(λ− aii)xi|︸ ︷︷ ︸

|λ+4| |xi|

=
∣∣∑n

j 6=i aijxj
∣∣︸ ︷︷ ︸

≤4 |xi|

. (1.7)

Here aii = −4 and aij ∈ {0, 1} for j 6= i, with at most four nonzero elements on the right-hand side. It is
seen that the case λ > 0 is impossible. Assuming λ = 0, we obtain |xj | = |xi| whenever aij = 1, so we can
alter the value of i in (1.7) to any of such j and repeat the same arguments. Thus, the modulus of every
component of x would be |xi|, but then the equations (1.7) that occur at the boundary of the grid and have
fewer than four off-diagonal terms (see (1.6)) could not be true. Hence, λ = 0 is impossible too, hence λ < 0
which proves that A is negative definite. �

Proposition 1.10 The eigenvalues of the matrix A obtained from the five-point discretization on the square [0, 1]2

are
λk,` = −4

(
sin2 kπh

2
+ sin2 `πh

2

)
, h =

1

M + 1
, k, ` = 1...M.

Proof. Let us show that, for every pair (k, `), the vectors

v = (vi,j), vi,j = sin ix sin jy, where x = kπh, y = `πh,

are the eigenvectors of A. Indeed, for i, j = 1...M , we have

(Av)i,j = sin(jy)
[

sin(ix− x)− 2 sin(ix) + sin(ix+ x)
]

+ sin(ix)
[

sin(jy − y)− 2 sin(jy) + sin(jy + y)
]

= sin(jy) sin(ix)
[
2 cosx− 2] + sin(ix) sin(jy)

[
2 cos y − 2

]
= λvi,j .

Note that the terms ui±1,j , ui,j±1 do not appear in (1.6) for i, j = 1 or i, j = M , respectively, therefore (for
such i, j) we should have dropped the corresponding components from above equation, but they are equal
to zero because sin(i − 1)x = 0 for i = 1, while sin(i + 1)x = 0 for i = M , since x = kπ

M+1 . Thus, the
eigenvalues are

λk,` =
[
2 cosx− 2

]
+
[
2 cos y − 2

]
= −4

(
sin2 x

2
+ sin2 y

2

)
= −4

(
sin2 kπh

2
+ sin2 `πh

2

)
. �

Remark 1.11 As a matter of independent mathematical interest, note that for 1 ≤ k, ` � M we have
sinx ≈ x, hence the eigenvalues for the discretized Laplacian∇2

h are

λk,`
h2
≈ − 4

h2

[
k2π2h2

4
+
`2π2h2

4

]
= −(k2 + `2)π2 .

Now, recall (e.g. from the solution of the Poisson equation in a square by separation of variables in Maths
Methods) that the exact eigenvalues of ∇2 (in the unit square) are −(k2 + `2)π2, k, ` ∈ N, with the cor-
responding eigenfunctions Vk,`(x, y) = sin kπx sin `πy. So, the eigenvectors of the discretized ∇2

h are the
values of Vk,`(x, y) on the grid-points, and the eigenvalues of∇2

h approximate those for continuous case.
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