Mathematical Tripos Part II: Michaelmas Term 2023 Numerical Analysis - Lecture 3

Let \widehat{u} be the exact solution of the Poisson equation, and let $\widehat{u}_{i, j}=\widehat{u}(i h, j h)$ be its values on the grid. Let

$$
\begin{equation*}
e_{i, j}=\widehat{u}_{i, j}-u_{i, j} \tag{1.7}
\end{equation*}
$$

be the pointwise error of the 5-point formula. Set $\boldsymbol{e}=\left(e_{i, j}\right) \in \mathbb{R}^{N}$ where $N=M^{2}$, and for $\boldsymbol{x} \in \mathbb{R}^{N}$ let $\|\boldsymbol{x}\|_{2}$ be the Euclidean norm of the vector \boldsymbol{x} :

$$
\|\boldsymbol{x}\|_{2}^{2}=\sum_{k=1}^{N}\left|x_{k}\right|^{2}=\sum_{i=1}^{M} \sum_{j=1}^{M}\left|x_{i, j}\right|^{2}
$$

Theorem 1.11 Assume the solution \widehat{u} of Poisson's equation is C^{4} and let

$$
\begin{equation*}
c=\frac{1}{12} \max _{0<x, y<1}\left|\frac{\partial^{4} \widehat{u}}{\partial x^{4}}(x, y)\right|+\left|\frac{\partial^{4} \widehat{u}}{\partial y^{4}}(x, y)\right|>0 . \tag{1.8}
\end{equation*}
$$

Then the error vector \boldsymbol{e} defined in (1.7) satisfies

$$
\|\boldsymbol{e}\|_{2} \leq(c / 8) h
$$

Proof. For a C^{4} univariate function $g:(a, b) \rightarrow \mathbb{R}$, the finite-difference approximation of $g^{\prime \prime}(x)$ for $x \in$ $(a+h, b-h)$ satisfies

$$
\left|g^{\prime \prime}(x)-(g(x+h)+g(x-h)-2 g(x)) / h^{2}\right| \leq \frac{h^{2}}{12} \max _{\xi \in(x-h, x+h)}\left|g^{(i v)}(\xi)\right|
$$

Applied to the Laplacian of a C^{4} bivariate function $u(x, y)$ we get

$$
\begin{aligned}
& \left|\nabla^{2} u(x, y)-(u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)) / h^{2}\right| \\
& \quad \leq \frac{h^{2}}{12} \max _{\substack{\xi \in(x-h, x+h) \\
\kappa \in(y-h, y+h)}}\left|\frac{\partial^{4} u}{\partial x^{4}}(\xi, \kappa)\right|+\left|\frac{\partial^{4} u}{\partial y^{4}}(\xi, \kappa)\right| .
\end{aligned}
$$

1) Since \hat{u} is the exact solution of Poisson's equation, we know that $\nabla^{2} \hat{u}(i h, j h)=f_{i j}$ for all $1 \leq i, j \leq M$. Replacing the left-hand side with the five-point approximation, and using the error bound above we can write:

$$
\begin{equation*}
\widehat{u}_{i-1, j}+\widehat{u}_{i+1, j}+\widehat{u}_{i, j-1}+\widehat{u}_{i, j+1}-4 \widehat{u}_{i, j}=h^{2} f_{i, j}+\eta_{i, j}, \quad\left|\eta_{i, j}\right| \leq c h^{4} \tag{1.9}
\end{equation*}
$$

where c is as defined in (1.8).
The solution of the five-point method u satisfies, for all $1 \leq i, j \leq M$:

$$
\begin{equation*}
u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}=h^{2} f_{i, j} \tag{1.10}
\end{equation*}
$$

Subtracting (1.10) from (1.9), we obtain

$$
e_{i-1, j}+e_{i+1, j}+e_{i, j-1}+e_{i, j+1}-4 e_{i, j}=\eta_{i, j}
$$

or, in the matrix form, $A \boldsymbol{e}=\boldsymbol{\eta}$, where A is symmetric (negative definite). It follows that

$$
A \boldsymbol{e}=\boldsymbol{\eta} \Rightarrow \boldsymbol{e}=A^{-1} \boldsymbol{\eta} \quad \Rightarrow \quad\|\boldsymbol{e}\|_{2} \leq\left\|A^{-1}\right\|\|\boldsymbol{\eta}\|_{2}
$$

where $\left\|A^{-1}\right\|$ is operator norm (also known as the spectral norm) of A^{-1} defined as $\left\|A^{-1}\right\|=\max _{\boldsymbol{x} \neq 0}\left\|A^{-1} \boldsymbol{x}\right\|_{2} /\|\boldsymbol{x}\|_{2}$.
2) Since every component of $\boldsymbol{\eta}$ satisfies $\left|\eta_{i, j}\right|^{2} \leq c^{2} h^{8}$, where $h=\frac{1}{M+1}$, and there are M^{2} components, we have

$$
\|\boldsymbol{\eta}\|_{2}^{2}=\sum_{i=1}^{M} \sum_{j=1}^{M}\left|\eta_{i, j}\right|^{2} \leq c^{2} M^{2} h^{8}<c^{2} \frac{1}{h^{2}} h^{8}=c^{2} h^{6} \Rightarrow\|\boldsymbol{\eta}\|_{2} \leq c h^{3} .
$$

3) The matrix A is symmetric, hence so is A^{-1} and therefore $\left\|A^{-1}\right\|=\rho\left(A^{-1}\right)$. Here $\rho\left(A^{-1}\right)$ is the spectral radius of A^{-1}, that is $\rho\left(A^{-1}\right)=\max _{i}\left|\lambda_{i}\right|$, where λ_{i} are the eigenvalues of A^{-1}. The eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A, and the latter are given by Proposition 1.12. Thus, using the fact that $\sin (\pi h / 2) \geq 1$ for $h \leq 1$ we get

$$
\left\|A^{-1}\right\|=\frac{1}{4} \max _{k, \ell=1 \ldots m}\left(\sin ^{2} \frac{k \pi h}{2}+\sin ^{2} \frac{\ell \pi h}{2}\right)^{-1}=\frac{1}{8 \sin ^{2}\left(\frac{1}{2} \pi h\right)} \leq \frac{1}{8 h^{2}}
$$

Therefore $\|\boldsymbol{e}\|_{2} \leq\left\|A^{-1}\right\|\|\boldsymbol{\eta}\|_{2} \leq(c / 8) h$ as desired.

Fast Poisson solvers Suppose that we are solving $\nabla^{2} u=f$ in a square $M \times M$ grid with the 5-point formula. Let the grid be enumerated in as before, i.e., by columns. Thus, the linear system $A \boldsymbol{u}=\boldsymbol{b}$ can be written explicitly in the block form

$$
\underbrace{\left[\begin{array}{cccc}
H & I & & \\
I & H & \ddots & \\
& \ddots & \ddots & I \\
& & I & H
\end{array}\right]}_{A}\left[\begin{array}{c}
\boldsymbol{u}_{1} \\
\boldsymbol{u}_{2} \\
\vdots \\
\boldsymbol{u}_{M}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2} \\
\vdots \\
\boldsymbol{b}_{M}
\end{array}\right], \quad H=\left[\begin{array}{rrrr}
-4 & 1 & & \\
1 & -4 & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & -4
\end{array}\right]_{M \times M}
$$

where $\boldsymbol{u}_{k}, \boldsymbol{b}_{k} \in \mathbb{R}^{M}$ are portions of \boldsymbol{u} and \boldsymbol{b}, respectively, and B is a TST-matrix which means tridiagonal, symmetric and Toeplitz (i.e., constant along diagonals). By Exercise 4, its eigenvalues and orthonormal eigenvectors are given as

$$
H \boldsymbol{q}_{\ell}=\lambda_{\ell} \boldsymbol{q}_{\ell}, \quad \lambda_{\ell}=-4+2 \cos \frac{\ell \pi}{M+1}, \quad \boldsymbol{q}_{\ell}=\gamma_{M}\left(\sin \frac{j \ell \pi}{M+1}\right)_{j=1}^{M}, \quad \ell=1 . . M
$$

where $\gamma_{M}=\sqrt{\frac{2}{M+1}}$ is the normalization factor. Hence $H=Q D Q^{-1}=Q D Q$, where $D=\operatorname{diag}\left(\lambda_{\ell}\right)$ and $Q=Q^{T}=\left(q_{j \ell}\right)$. Note that all $M \times M$ TST matrices share the same full set of eigenvectors, hence they all commute!

Hockney method Set $\boldsymbol{v}_{k}=Q \boldsymbol{u}_{k}, \boldsymbol{c}_{k}=Q \boldsymbol{b}_{k}$, therefore our system becomes

$$
\left[\begin{array}{cccc}
D & I & & \\
I & D & \ddots & \\
& \ddots & \ddots & I \\
& & I & D
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\boldsymbol{v}_{2} \\
\vdots \\
\boldsymbol{v}_{M}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{c}_{1} \\
\boldsymbol{c}_{2} \\
\vdots \\
\boldsymbol{c}_{M}
\end{array}\right]
$$

Let us by this stage reorder the grid by rows, instead of by columns.. In other words, we permute $\boldsymbol{v} \mapsto \widehat{\boldsymbol{v}}=P \boldsymbol{v}$, $\boldsymbol{c} \mapsto \widehat{\boldsymbol{c}}=P \boldsymbol{c}$, so that the portion $\widehat{\boldsymbol{c}}_{1}$ is made out of the first components of the portions $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{M}$, the portion $\widehat{\boldsymbol{c}}_{2}$ out of the second components and so on. This results in new system

$$
\left[\begin{array}{cccc}
\Lambda_{1} & & & \\
& \Lambda_{2} & & \\
& & \ddots & \\
& & & \Lambda_{M}
\end{array}\right]\left[\begin{array}{c}
\widehat{\boldsymbol{v}}_{1} \\
\widehat{\boldsymbol{v}}_{2} \\
\vdots \\
\widehat{\boldsymbol{v}}_{M}
\end{array}\right]=\left[\begin{array}{c}
\widehat{\boldsymbol{c}}_{1} \\
\widehat{\boldsymbol{c}}_{2} \\
\vdots \\
\widehat{\boldsymbol{c}}_{M}
\end{array}\right], \quad \Lambda_{k}=\left[\begin{array}{ccccc}
\lambda_{k} & 1 & & \\
1 & \lambda_{k} & 1 & \\
& \ddots & \ddots & \ddots \\
& & 1 & \lambda_{k}
\end{array}\right]_{M \times M}, \quad k=1 \ldots M
$$

These are M uncoupled systems, $\Lambda_{k} \widehat{\boldsymbol{v}}_{k}=\widehat{\boldsymbol{c}}_{k}$ for $k=1 \ldots M$. Being tridiagonal, each such system can be solved fast, at the cost of $\mathcal{O}(M)$. Thus, the steps of the algorithm and their computational cost are as follows.

1. Form the products $\boldsymbol{c}_{k}=Q \boldsymbol{b}_{k}, \quad k=1 \ldots M \quad \ldots . \mathcal{O}\left(M^{3}\right)$
2. Solve $M \times M$ tridiagonal systems $\Lambda_{k} \widehat{\boldsymbol{v}}_{k}=\widehat{\boldsymbol{c}}_{k}, \quad k=1 \ldots M \quad \ldots \ldots \ldots \ldots \ldots . \mathcal{O}\left(M^{2}\right)$
3. Form the products $\boldsymbol{u}_{k}=Q \boldsymbol{v}_{k}, \quad k=1 \ldots M \quad \ldots \in \mathcal{O}\left(M^{3}\right)$
(Permutations $\boldsymbol{c} \mapsto \widehat{\boldsymbol{c}}$ and $\widehat{\boldsymbol{v}} \mapsto \boldsymbol{v}$ are basically free.)
Improved Hockney algorithm We observe that the computational bottleneck is to be found in the $2 M$ matrix-vector products by the matrix Q. Recall further that the elements of Q are $q_{j \ell}=\gamma_{M} \sin \frac{\pi j \ell}{M+1}$. This special form lends itself to a considerable speedup in matrix multiplication. Before making the problem simpler, however, let us make it more complicated! We write a typical product in the form

$$
\begin{equation*}
(Q \boldsymbol{y})_{\ell}=\sum_{j=1}^{M} \sin \frac{\pi j \ell}{M+1} y_{j}=\operatorname{Im} \sum_{j=0}^{M} \exp \frac{\mathrm{i} \pi j \ell}{M+1} y_{j}=\operatorname{Im} \sum_{j=0}^{2 M+1} \exp \frac{2 \mathrm{i} \pi j \ell}{2 M+2} y_{j}, \quad \ell=1 \ldots M, \tag{1.11}
\end{equation*}
$$

where $y_{M+1}=\cdots=y_{2 M+1}=0$.
The discrete Fourier transform (DFT) The discrete Fourier transform of a vector $y \in \mathbb{C}^{n}$ is $x=\mathcal{F}_{n} y$ defined by

$$
x_{\ell}=\sum_{j=0}^{n-1} \omega_{n}^{j \ell} y_{j} \quad \ell=0, \ldots, n-1
$$

where $\omega_{n}=\exp (2 i \pi / n)$. (We assume in the above that vectors are indexed from 0 to $n-1$.) Thus, we see that multiplication by Q in (1.11) can be reduced to calculating a DFT. In the next lecture, we see how to compute the DFT of a vector y in $\mathcal{O}(n \log n)$ operations, instead of $\mathcal{O}\left(n^{2}\right)$.

