
Dr H. Fawzi

Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis – Lecture 4

Fast Fourier Transform (FFT) We assume that n is a power of 2, i.e. n = 2m = 2p, and for y ∈ C2m, denote
by

y(E) = {y2j}j=0,...,m ∈ Cm and y(O) = {y2j+1}j=0,...,m ∈ Cm

the even and odd portions of y, respectively.
Suppose that we already know the DFT of both ‘short’ sequences,

x(E) = Fmy(E), x(O) = Fmy(O).

It is then possible to assemble x = F2my in a small number of operations. Indeed, for ` ∈ {0, . . . ,m − 1},
we have

x` =
2m−1∑
j=0

ωj`2myj =

m−1∑
j=0

ω2j`
2my2j +

m−1∑
j=0

ω
(2j+1)`
2m y2j+1

=

m−1∑
j=0

ωj`my
(E)
j + ω`2m

m−1∑
j=0

ωj`my
(O)
j = x

(E)
` + ω`2mx

(O)
` .

Therefore, it costs just m products to evaluate the first half of x, provided that x(E) and x(O) are known. It
actually costs nothing to evaluate the second half, since

ωj(m+`)
m = ωj`m, ωm+`

2m = −ω`2m ⇒ xm+` = x
(E)
` − ω`2mx

(O)
` , ` = 0, . . . ,m−1.

To execute FFT, we start from vectors of unit length and in each s-th stage, s = 1...p, assemble 2p−s vectors
of length 2s from vectors of length 2s−1: this costs 2p−s2s−1 = 2p−1 products. Altogether, the cost of FFT is
p2p−1 = 1

2n log2 n products.

0 1 2 3 4 5 6 7
↗ ↖

← 1 block of length 2p

0 2 4 6
↗ ↖

1 3 5 7
↗ ↖

← 2p−s blocks of length 2s

0 4
↗↖

2 6
↗↖

1 5
↗↖

3 7
↗↖

← 2p−1 blocks of length 2

0 4 2 6 1 5 3 7 ← 2p blocks of length 1

For n = 1024 = 210, say, the cost is ≈ 5× 103 products, compared to ≈ 106 for naive matrix multiplication!
For n = 220 the respective numbers are ≈ 1.05× 107 and ≈ 1.1× 1012, which represents a saving by a factor
of more than 105.

Matlab demo: Check out the online animation for computing the FFT at http://www.damtp.cam.ac.
uk/user/hf323/M21-II-NA/demos/fft_gui/fft_gui.html and download the Matlab GUI from
there to follow the computation of each single FFT term.

Example 1.15 Computation of FFT for n = 4 in general, and for the vector y = (1, 1,−1,−1) in particular.

02 = 01 + 11 12 = 21 + i31 22 = 01 − 11 32 = 21 − i31
↗ ↖

01 = 00 + 20 21 = 00 − 20
↗↖

11 = 10 + 30 31 = 10 − 30
↗↖

00 20 10 30

⇒

0 2 + 2i 0 2− 2i
↗ ↖

0 2
↗↖

0 2
↗↖

+1 −1 +1 −1

7

http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/fft_gui/fft_gui.html
http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/fft_gui/fft_gui.html


2 Partial differential equations of evolution

We consider the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x, 0) = u0(x) for t = 0 and zero Dirichlet boundary conditions u(0, t) = u(1, t) = 0.
By Taylor’s expansion

∂u(x,t)
∂t

= 1
k

[
u(x, t+ k)− u(x, t)

]
+O(k), k = ∆t ,

∂2u(x,t)
∂x2 = 1

h2

[
u(x− h, t)− 2u(x, t) + u(x+ h, t)

]
+O(h2), h = ∆x ,

so that, for the exact solution u = û of the diffusion equation, we obtain

û(x, t+ k) = û(x, t) + k
h2

[
û(x− h, t)− 2û(x, t) + û(x+ h, t)

]
+ η(x, t) (2.1)

where η(x, t) = O(k2+kh2). (More precisely, one proves using Taylor’s theorem that |η(x, t)| ≤ c1k2 +c2kh
2

where c1 = 1
2

maxξ,τ |∂
2û

∂t2
(ξ, τ)| and c2 = 1

12
maxξ,τ |∂

4û
∂x4 (ξ, τ)|.) That motivates the numerical scheme for

approximation unm ≈ û(xm, tn) on the rectangular mesh (xm, tn) = (mh, nk):

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
, m = 1...M . (2.2)

Here h= 1
M+1

and µ= k
h2 = ∆t

(∆x)2
is the so-called Courant number. With µ being fixed, we have k = µh2,

so that the local truncation error of the scheme isO(k2). Substituting whenever necessary initial conditions
u0m and boundary conditions un0 and unM+1, we possess enough information to advance in (2.2) from un :=

[un1 , . . . , u
n
M ] to un+1 := [un+1

1 , . . . , un+1
M ].

Similarly to ODEs or Poisson equation, we say that the method is convergent if, for a fixed µ, and for
every T > 0, we have

lim
h→0,k→0
k/h2=µ

max
1≤m≤M
1≤n≤T/k

|unm − û(mh, nk)| = 0.

Theorem 2.1 If µ ≤ 1
2 , then method (2.2) converges.

Proof. Let enm := û(mh, nk) − unm be the error of approximation, and let en = [en1 , . . . , e
n
M ] with ‖en‖∞ :=

maxm |enm|. Convergence is equivalent to

lim
h→0

max
1≤n≤T/k

‖en‖∞ = 0

for every constant T > 0. Subtracting (2.1) from (2.2), we obtain

en+1
m = enm + µ(enm−1 − 2enm + enm+1) + ηnm

= µenm−1 + (1− 2µ)enm + µenm+1 + ηnm

where |ηnm| ≤ ck2 for some constant c > 0 (namely c = c1 + c2/µ, where c1, c2 > 0 are defined after equation
(2.1)). Then

‖en+1‖∞ = max
m
|en+1
m | ≤ (2µ+ |1− 2µ|) ‖en‖∞ + ck2 = ‖en‖∞ + ck2,

by virtue of µ ≤ 1
2 . Since ‖e0‖∞ = 0, induction yields

‖en‖∞ ≤ cnk2 ≤ cT
k
k2 = cTk → 0 (k → 0). �

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www.damtp.cam.ac.
uk/user/hf323/M21-II-NA/demos/pde_stability/pde_stability.html and solve the diffusion
equation in the interval [0, 1] with method (2.2) and µ = 0.51 > 1

2 . Using (as preset) 100 grid points to dis-
cretise [0, 1] will then require the time steps to be 5.1 · 10−5. The solution will evolve very slowly, but wait
long enough to see what happens!

8

http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pde_stability/pde_stability.html
http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pde_stability/pde_stability.html

	Partial differential equations of evolution

