Mathematical Tripos Part II: Michaelmas Term 2023
 Numerical Analysis - Lecture 4

Fast Fourier Transform (FFT) We assume that n is a power of 2 , i.e. $n=2 m=2^{p}$, and for $\boldsymbol{y} \in \mathbb{C}^{2 m}$, denote by

$$
\boldsymbol{y}^{(\mathrm{E})}=\left\{y_{2 j}\right\}_{j=0, \ldots, m} \in \mathbb{C}^{m} \quad \text { and } \quad \boldsymbol{y}^{(\mathrm{O})}=\left\{y_{2 j+1}\right\}_{j=0, \ldots, m} \in \mathbb{C}^{m}
$$

the even and odd portions of \boldsymbol{y}, respectively.
Suppose that we already know the DFT of both 'short' sequences,

$$
\boldsymbol{x}^{(\mathrm{E})}=\mathcal{F}_{m} \boldsymbol{y}^{(\mathrm{E})}, \quad \boldsymbol{x}^{(\mathrm{O})}=\mathcal{F}_{m} \boldsymbol{y}^{(\mathrm{O})}
$$

It is then possible to assemble $\boldsymbol{x}=\mathcal{F}_{2 m} \boldsymbol{y}$ in a small number of operations. Indeed, for $\ell \in\{0, \ldots, m-1\}$, we have

$$
\begin{aligned}
x_{\ell}=\sum_{j=0}^{2 m-1} \omega_{2 m}^{j \ell} y_{j} & =\sum_{j=0}^{m-1} \omega_{2 m}^{2 j \ell} y_{2 j}+\sum_{j=0}^{m-1} \omega_{2 m}^{(2 j+1) \ell} y_{2 j+1} \\
& =\sum_{j=0}^{m-1} \omega_{m}^{j \ell} y_{j}^{(\mathrm{E})}+\omega_{2 m}^{\ell} \sum_{j=0}^{m-1} \omega_{m}^{j \ell} y_{j}^{(\mathrm{O})}=x_{\ell}^{(\mathrm{E})}+\omega_{2 m}^{\ell} x_{\ell}^{(\mathrm{O})}
\end{aligned}
$$

Therefore, it costs just m products to evaluate the first half of \boldsymbol{x}, provided that $\boldsymbol{x}^{(\mathrm{E})}$ and $\boldsymbol{x}^{(\mathrm{O})}$ are known. It actually costs nothing to evaluate the second half, since

$$
\omega_{m}^{j(m+\ell)}=\omega_{m}^{j \ell}, \quad \omega_{2 m}^{m+\ell}=-\omega_{2 m}^{\ell} \quad \Rightarrow \quad x_{m+\ell}=x_{\ell}^{(\mathrm{E})}-\omega_{2 m}^{\ell} x_{\ell}^{(\mathrm{O})}, \quad \ell=0, \ldots, m-1
$$

To execute FFT, we start from vectors of unit length and in each s-th stage, $s=1 \ldots p$, assemble 2^{p-s} vectors of length 2^{s} from vectors of length 2^{s-1} : this costs $2^{p-s} 2^{s-1}=2^{p-1}$ products. Altogether, the cost of FFT is $p 2^{p-1}=\frac{1}{2} n \log _{2} n$ products.

For $n=1024=2^{10}$, say, the cost is $\approx 5 \times 10^{3}$ products, compared to $\approx 10^{6}$ for naive matrix multiplication! For $n=2^{20}$ the respective numbers are $\approx 1.05 \times 10^{7}$ and $\approx 1.1 \times 10^{12}$, which represents a saving by a factor of more than 10^{5}.

Matlab demo: Check out the online animation for computing the FFT at http://www. damtp.cam.ac. uk/user/hf323/M21-II-NA/demos/fft_gui/fft_gui.html and download the Matlab GUI from there to follow the computation of each single FFT term.
Example 1.15 Computation of FFT for $n=4$ in general, and for the vector $\boldsymbol{y}=(1,1,-1,-1)$ in particular.

2 Partial differential equations of evolution

We consider the diffusion equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq 1, \quad t \geq 0
$$

with initial conditions $u(x, 0)=u_{0}(x)$ for $t=0$ and zero Dirichlet boundary conditions $u(0, t)=u(1, t)=0$. By Taylor's expansion

$$
\begin{aligned}
\frac{\partial u(x, t)}{\partial t} & =\frac{1}{k}[u(x, t+k)-u(x, t)]+\mathcal{O}(k), & & k=\Delta t \\
\frac{\partial^{2} u(x, t)}{\partial x^{2}} & =\frac{1}{h^{2}}[u(x-h, t)-2 u(x, t)+u(x+h, t)]+\mathcal{O}\left(h^{2}\right), & & h=\Delta x
\end{aligned}
$$

so that, for the exact solution $u=\widehat{u}$ of the diffusion equation, we obtain

$$
\begin{equation*}
\widehat{u}(x, t+k)=\widehat{u}(x, t)+\frac{k}{h^{2}}[\widehat{u}(x-h, t)-2 \widehat{u}(x, t)+\widehat{u}(x+h, t)]+\eta(x, t) \tag{2.1}
\end{equation*}
$$

where $\eta(x, t)=\mathcal{O}\left(k^{2}+k h^{2}\right)$. (More precisely, one proves using Taylor's theorem that $|\eta(x, t)| \leq c_{1} k^{2}+c_{2} k h^{2}$ where $c_{1}=\frac{1}{2} \max _{\xi, \tau}\left|\frac{\partial^{2} \widehat{u}}{\partial t^{2}}(\xi, \tau)\right|$ and $c_{2}=\frac{1}{12} \max _{\xi, \tau}\left|\frac{\partial^{4} \widehat{u}}{\partial x^{4}}(\xi, \tau)\right|$.) That motivates the numerical scheme for approximation $u_{m}^{n} \approx \widehat{u}\left(x_{m}, t_{n}\right)$ on the rectangular mesh $\left(x_{m}, t_{n}\right)=(m h, n k)$:

$$
\begin{equation*}
u_{m}^{n+1}=u_{m}^{n}+\mu\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right), \quad m=1 \ldots M \tag{2.2}
\end{equation*}
$$

Here $h=\frac{1}{M+1}$ and $\mu=\frac{k}{h^{2}}=\frac{\Delta t}{(\Delta x)^{2}}$ is the so-called Courant number. With μ being fixed, we have $k=\mu h^{2}$, so that the local truncation error of the scheme is $\mathcal{O}\left(k^{2}\right)$. Substituting whenever necessary initial conditions u_{m}^{0} and boundary conditions u_{0}^{n} and u_{M+1}^{n}, we possess enough information to advance in 2.2 from $\boldsymbol{u}^{n}:=$ $\left[u_{1}^{n}, \ldots, u_{M}^{n}\right]$ to $\boldsymbol{u}^{n+1}:=\left[u_{1}^{n+1}, \ldots, u_{M}^{n+1}\right]$.

Similarly to ODEs or Poisson equation, we say that the method is convergent if, for a fixed μ, and for every $T>0$, we have

$$
\lim _{\substack{h \rightarrow 0, k \rightarrow 0 \\ k / h^{2}=\mu}} \max _{\substack{1 \leq m \leq M \\ 1 \leq n \leq T / k}}\left|u_{m}^{n}-\widehat{u}(m h, n k)\right|=0 .
$$

Theorem 2.1 If $\mu \leq \frac{1}{2}$, then method (2.2) converges.
Proof. Let $e_{m}^{n}:=\widehat{u}(m h, n k)-u_{m}^{n}$ be the error of approximation, and let $\boldsymbol{e}^{n}=\left[e_{1}^{n}, \ldots, e_{M}^{n}\right]$ with $\left\|\boldsymbol{e}^{n}\right\|_{\infty}:=$ $\max _{m}\left|e_{m}^{n}\right|$. Convergence is equivalent to

$$
\lim _{h \rightarrow 0} \max _{1 \leq n \leq T / k}\left\|\boldsymbol{e}^{n}\right\|_{\infty}=0
$$

for every constant $T>0$. Subtracting (2.1) from (2.2), we obtain

$$
\begin{aligned}
e_{m}^{n+1} & =e_{m}^{n}+\mu\left(e_{m-1}^{n}-2 e_{m}^{n}+e_{m+1}^{n}\right)+\eta_{m}^{n} \\
& =\mu e_{m-1}^{n}+(1-2 \mu) e_{m}^{n}+\mu e_{m+1}^{n}+\eta_{m}^{n}
\end{aligned}
$$

where $\left|\eta_{m}^{n}\right| \leq c k^{2}$ for some constant $c>0$ (namely $c=c_{1}+c_{2} / \mu$, where $c_{1}, c_{2}>0$ are defined after equation (2.1)). Then

$$
\left\|\boldsymbol{e}^{n+1}\right\|_{\infty}=\max _{m}\left|e_{m}^{n+1}\right| \leq(2 \mu+|1-2 \mu|)\left\|\boldsymbol{e}^{n}\right\|_{\infty}+c k^{2}=\left\|\boldsymbol{e}^{n}\right\|_{\infty}+c k^{2}
$$

by virtue of $\mu \leq \frac{1}{2}$. Since $\left\|\boldsymbol{e}^{0}\right\|_{\infty}=0$, induction yields

$$
\left\|\boldsymbol{e}^{n}\right\|_{\infty} \leq c n k^{2} \leq \frac{c T}{k} k^{2}=c T k \rightarrow 0 \quad(k \rightarrow 0)
$$

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs from http://www. damtp.cam.ac. uk/user/hf323/M21-II-NA/demos/pde_stability/pde_stability.htmland solve the diffusion equation in the interval [0,1] with method 2.2 and $\mu=0.51>\frac{1}{2}$. Using (as preset) 100 grid points to discretise $[0,1]$ will then require the time steps to be $5.1 \cdot 10^{-5}$. The solution will evolve very slowly, but wait long enough to see what happens!

