Mathematical Tripos Part II: Michaelmas Term 2023 Numerical Analysis - Lecture 5

Stability, consistency and the Lax equivalence theorem Suppose that a numerical method for a partial differential equation of evolution can be written in the form ${ }^{1}$

$$
\boldsymbol{u}^{n+1}=A_{h} \boldsymbol{u}^{n}
$$

where $\boldsymbol{u}^{n} \in \mathbb{R}^{M}, A_{h} \in \mathbb{R}^{M \times M}$ is a matrix, and $h=\frac{1}{M+1}$. Fix a norm $\|\cdot\|$ on \mathbb{R}^{M}, and let $\left\|A_{h}\right\|=\sup \frac{\left\|A_{h} \boldsymbol{x}\right\|}{\|\boldsymbol{x}\|}$ be the corresponding induced matrix norm. If we define stability as preserving the boundedness of \boldsymbol{u}^{n} with respect to the norm $\|\cdot\|$, then since

$$
\left\|\boldsymbol{u}^{n}\right\| \leq\left\|A_{h}^{n} \boldsymbol{u}^{0}\right\| \leq\left\|A_{h}\right\|^{n}\left\|\boldsymbol{u}^{0}\right\|
$$

we get:

$$
\left\|A_{h}\right\| \leq 1 \text { as } h \rightarrow 0 \Rightarrow \text { the method is stable. }
$$

If we denote the exact solution of the PDE by $\widehat{u}(x, t)$ and let $\widehat{\boldsymbol{u}}^{n}=(\widehat{u}(m k, n t))_{1 \leq m \leq M}$, then we have $\widehat{\boldsymbol{u}}^{n+1}=$ $A_{h} \widehat{\boldsymbol{u}}^{n}+\boldsymbol{\eta}^{n}$ where $\boldsymbol{\eta}^{n}$ is the local truncation error. The error vector $\boldsymbol{e}^{n}=\widehat{\boldsymbol{u}}^{n}-\boldsymbol{u}^{n}$ satisfies

$$
\boldsymbol{e}^{n+1}=A_{h} \boldsymbol{e}^{n}+\boldsymbol{\eta}^{n}
$$

Using $\left\|A_{h}\right\| \leq 1$ and assuming $\left\|\boldsymbol{e}^{0}\right\|=0$, we get $\left\|\boldsymbol{e}^{n}\right\| \leq\left\|\boldsymbol{\eta}^{n-1}\right\|+\cdots+\left\|\boldsymbol{\eta}^{0}\right\|$. If consistency holds, i.e., $\left\|\boldsymbol{\eta}^{n}\right\|=O\left(k^{2}\right)$, then we see that $\left\|\boldsymbol{e}^{n}\right\| \leq n c k^{2}$ for some constant $c>0$. Since $n \leq T / k$ we end up with $\left\|\boldsymbol{e}^{n}\right\| \leq c T k$, and so $\left\|\boldsymbol{e}^{n}\right\| \rightarrow 0$ as $k \rightarrow 0$ uniformly in $n \in[1, T / k]$. This shows convergence.

We have thus arrived at the Lax equivalence theorem: "consistency + stability = convergence" (more precisely what we have proved here is the implication \Longrightarrow).
Norms The discussion above involves a choice of norm on \mathbb{R}^{M}. There are two standard choices of norms:

- Sup-norm. Here, we choose

$$
\|\boldsymbol{u}\|=\|\boldsymbol{u}\|_{\infty}=\max _{i=1, \ldots, M}\left|u_{i}\right|
$$

It can be easily shown that the corresponding induced norm for a matrix $A \in \mathbb{R}^{M \times M}$ is given by:

$$
\|A\|_{\infty \rightarrow \infty}:=\sup _{\boldsymbol{x}} \frac{\|A \boldsymbol{x}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}}=\max _{i=1, \ldots, M} \sum_{j=1}^{M}\left|A_{i j}\right|
$$

This the choice of norm we implicitly used in the convergence proof of Theorem 2.1 (Lecture 4). The matrix in this case was

$$
A_{h}=\left[\begin{array}{cccc}
1-2 \mu & \mu & & \\
\mu & \ddots & \ddots & \\
& \ddots & \ddots & \mu \\
& & \mu & 1-2 \mu
\end{array}\right]
$$

for which we get $\left\|A_{h}\right\|_{\infty \rightarrow \infty}=|1-2 \mu|+2 \mu \leq 1$ if $\mu \leq 1 / 2$.

- Normalized Euclidean norm. Another common of choice of norm is the normalized Euclidean length, namely,

$$
\|\boldsymbol{u}\|:=\sqrt{\frac{1}{M} \sum_{i=1}^{M}\left|u_{i}\right|^{2}}
$$

[^0]The reason for the factor $\frac{1}{M}$ is to ensure that, because of the convergence of Riemann sums, we obtain

$$
\|\boldsymbol{u}\|:=\left[\frac{1}{M} \sum_{i=1}^{M}\left|u_{i}\right|^{2}\right]^{1 / 2} \rightarrow\left[\int_{0}^{1}|u(x)|^{2} \mathrm{~d} x\right]^{1 / 2}=:\|u\|_{L_{2}} \quad(h=1 /(M+1) \rightarrow 0)
$$

The induced matrix norm in this case is the spectral norm (or the operator norm) and is denoted $\|A\|_{2}:^{2}$

$$
\|A\|_{2}:=\sup _{\boldsymbol{x}} \frac{\|A \boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}}
$$

The spectral norm of A is equal to the largest singular value of A. Equivalently, we can write $\|A\|_{2}=$ $\left[\rho\left(A A^{T}\right)\right]^{1 / 2}$ where ρ is the spectral radius:

$$
\rho(M):=\max \{|\lambda|: \lambda \text { eigenvalue of } M\} .
$$

For certain matrices, such as normal matrices, one can show that $\|A\|_{2}=\rho(A)$.
Definition 1.19 (Normal matrices) A complex matrix $A \in \mathbb{C}^{M \times M}$ is normal if it commutes with its conjugate transpose, i.e., $A \bar{A}^{T}=\bar{A}^{T} A$.

Examples of real normal matrices include symmetric matrices ($A=A^{T}$) and skew-symmetric matrices ($A=-A^{T}$). Any normal matrix A can be diagonalized in an orthonormal basis, i.e., $A=Q D \bar{Q}^{T}$ where Q unitary, $Q \bar{Q}^{T}=\bar{Q}^{T} Q=I$, and D is diagonal. Note however that the diagonal elements $D_{i i}$ are not necessarily real!

Proposition 1.20 If A is normal, then $\|A\|_{2}=\rho(A)$.
Proof. Let \boldsymbol{u} be any vector. We can expand it in the basis of the orthonormal eigenvectors $\boldsymbol{u}=$ $\sum_{i=1}^{n} a_{i} \boldsymbol{q}_{i}$. Then $A \boldsymbol{u}=\sum_{i=1}^{n} \lambda_{i} a_{i} \boldsymbol{q}_{i}$, and since \boldsymbol{q}_{i} are orthonormal, we obtain

$$
\|A\|_{2}:=\sup _{\boldsymbol{u}} \frac{\|A \boldsymbol{u}\|_{2}}{\|\boldsymbol{u}\|_{2}}=\sup _{a_{i}} \frac{\left\{\sum_{i=1}^{M}\left|\lambda_{i} a_{i}\right|^{2}\right\}^{1 / 2}}{\left\{\sum_{i=1}^{M}\left|a_{i}\right|^{2}\right\}^{1 / 2}}=\left|\lambda_{\max }\right|
$$

Example 1.21 We can analyze the stability of [(2.2), Lecture 4] using the eigenvalue methods just described. The recurrence (2.2) can be written as:

$$
u_{m}^{n+1}=u_{m}^{n}+\mu\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right), \quad m=1 \ldots M
$$

in the matrix form

$$
\boldsymbol{u}_{h}^{n+1}=A_{h} \boldsymbol{u}_{h}^{n}, \quad A_{h}=I+\mu A_{*}, \quad A_{*}=\left[\begin{array}{rrrr}
-2 & 1 & & \\
1 & \ddots & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & -2
\end{array}\right]_{M \times M}
$$

Here A_{*} is Toeplitz, symmetric, tridiagonal (TST), with $\lambda_{\ell}\left(A_{*}\right)=-4 \sin ^{2} \frac{\pi \ell h}{2}$, hence $\lambda_{\ell}\left(A_{h}\right)=1-$ $4 \mu \sin ^{2} \frac{\pi \ell h}{2}$, so that its spectrum lies within the interval $\left[\lambda_{M}, \lambda_{1}\right]=\left[1-4 \mu \cos ^{2} \frac{\pi h}{2}, 1-4 \mu \sin ^{2} \frac{\pi h}{2}\right]$. Since A_{h} is symmetric, we have

$$
\left\|A_{h}\right\|_{2}=\rho\left(A_{h}\right)=\left\{\begin{array}{ll}
\left|1-4 \mu \sin ^{2} \frac{\pi h}{2}\right| \leq 1, & \mu \leq \frac{1}{2} \\
\left|1-4 \mu \cos ^{2} \frac{\pi h}{2}\right|>1, & \mu>\frac{1}{2}
\end{array} \quad\left(h \leq h_{\mu}\right)\right.
$$

We recover the fact that the method is stable for $\mu \leq 1 / 2$.

[^1]
[^0]: ${ }^{1}$ Assuming zero boundary conditions

[^1]: ${ }^{2}$ Note that if $\|\cdot\|$ is the normalized Euclidean norm, then $\|A x\| /\|x\|=\|A x\|_{2} /\|x\|_{2}$ where $\|x\|_{2}=\left(\sum_{i}\left|x_{i}\right|^{2}\right)^{1 / 2}$ is the usual (unnormalized) Euclidean norm

