Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis – Lecture 5

Stability, consistency and the Lax equivalence theorem Suppose that a numerical method for a partial differential equation of evolution can be written in the form¹

$$\boldsymbol{u}^{n+1} = A_h \boldsymbol{u}^n,$$

where $u^n \in \mathbb{R}^M$, $A_h \in \mathbb{R}^{M \times M}$ is a matrix, and $h = \frac{1}{M+1}$. Fix a norm $\|\cdot\|$ on \mathbb{R}^M , and let $\|A_h\| = \sup \frac{\|A_h x\|}{\|x\|}$ be the corresponding induced matrix norm. If we define *stability* as preserving the boundedness of u^n with respect to the norm $\|\cdot\|$, then since

$$\|oldsymbol{u}^n\|\leq \|A_h^noldsymbol{u}^0\|\leq \|A_h\|^n\|oldsymbol{u}^0\|_2$$

we get:

$$A_h \parallel \leq 1 \text{ as } h \to 0 \quad \Rightarrow \quad \text{the method is stable}$$

If we denote the exact solution of the PDE by $\hat{u}(x,t)$ and let $\hat{u}^n = (\hat{u}(mk,nt))_{1 \le m \le M}$, then we have $\hat{u}^{n+1} = A_h \hat{u}^n + \eta^n$ where η^n is the local truncation error. The error vector $e^n = \hat{u}^n - u^n$ satisfies

$$e^{n+1} = A_h e^n + \eta^n.$$

Using $||A_h|| \leq 1$ and assuming $||e^0|| = 0$, we get $||e^n|| \leq ||\eta^{n-1}|| + \cdots + ||\eta^0||$. If *consistency* holds, i.e., $||\eta^n|| = O(k^2)$, then we see that $||e^n|| \leq nck^2$ for some constant c > 0. Since $n \leq T/k$ we end up with $||e^n|| \leq cTk$, and so $||e^n|| \to 0$ as $k \to 0$ uniformly in $n \in [1, T/k]$. This shows convergence.

We have thus arrived at the *Lax equivalence theorem*: "consistency + stability = convergence" (more precisely what we have proved here is the implication \implies).

Norms The discussion above involves a choice of norm on \mathbb{R}^M . There are two standard choices of norms:

• *Sup-norm*. Here, we choose

||.

$$\|\boldsymbol{u}\| = \|\boldsymbol{u}\|_{\infty} = \max_{i=1,\dots,M} |u_i|.$$

It can be easily shown that the corresponding induced norm for a matrix $A \in \mathbb{R}^{M \times M}$ is given by:

$$\|A\|_{\infty \to \infty} := \sup_{\boldsymbol{x}} \frac{\|A\boldsymbol{x}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}} = \max_{i=1,\dots,M} \sum_{j=1}^{M} |A_{ij}|$$

This the choice of norm we implicitly used in the convergence proof of Theorem 2.1 (Lecture 4). The matrix in this case was

$$A_{h} = \begin{bmatrix} 1 - 2\mu & \mu & & \\ \mu & \ddots & \ddots & \\ & \ddots & \ddots & \mu \\ & & \mu & 1 - 2\mu \end{bmatrix},$$

for which we get $||A_h||_{\infty \to \infty} = |1 - 2\mu| + 2\mu \le 1$ if $\mu \le 1/2$.

• *Normalized Euclidean norm.* Another common of choice of norm is the normalized Euclidean length, namely,

$$\|\boldsymbol{u}\| := \sqrt{\frac{1}{M} \sum_{i=1}^{M} |u_i|^2}.$$

¹Assuming zero boundary conditions

The reason for the factor $\frac{1}{M}$ is to ensure that, because of the convergence of Riemann sums, we obtain

$$\|\boldsymbol{u}\| := \left[\frac{1}{M} \sum_{i=1}^{M} |u_i|^2\right]^{1/2} \to \left[\int_0^1 |u(x)|^2 \mathrm{d}x\right]^{1/2} =: \|u\|_{L_2} \qquad (h = 1/(M+1) \to 0),$$

The induced matrix norm in this case is the *spectral norm* (or the *operator norm*) and is denoted $||A||_2$.²

$$||A||_2 := \sup_{\boldsymbol{x}} \frac{||A\boldsymbol{x}||_2}{||\boldsymbol{x}||_2}$$

The spectral norm of *A* is equal to the largest singular value of *A*. Equivalently, we can write $||A||_2 = [\rho(AA^T)]^{1/2}$ where ρ is the spectral radius:

$$\rho(M) := \max\{|\lambda| : \lambda \text{ eigenvalue of } M\}.$$

For certain matrices, such as normal matrices, one can show that $||A||_2 = \rho(A)$.

Definition 1.19 (Normal matrices) A complex matrix $A \in \mathbb{C}^{M \times M}$ is *normal* if it commutes with its conjugate transpose, i.e., $A\bar{A}^T = \bar{A}^T A$.

Examples of real normal matrices include symmetric matrices $(A = A^T)$ and skew-symmetric matrices $(A = -A^T)$. Any normal matrix A can be diagonalized in an orthonormal basis, i.e., $A = QD\bar{Q}^T$ where Q unitary, $Q\bar{Q}^T = \bar{Q}^TQ = I$, and D is diagonal. Note however that the diagonal elements D_{ii} are not necessarily real!

Proposition 1.20 If A is normal, then $||A||_2 = \rho(A)$.

Proof. Let u be any vector. We can expand it in the basis of the orthonormal eigenvectors $u = \sum_{i=1}^{n} a_i q_i$. Then $Au = \sum_{i=1}^{n} \lambda_i a_i q_i$, and since q_i are orthonormal, we obtain

$$\|A\|_2 := \sup_{oldsymbol{u}} rac{\|Aoldsymbol{u}\|_2}{\|oldsymbol{u}\|_2} = \sup_{a_i} rac{\{\sum_{i=1}^M |\lambda_i a_i|^2\}^{1/2}}{\{\sum_{i=1}^M |a_i|^2\}^{1/2}} = |\lambda_{ ext{max}}|\,.$$

Example 1.21 We can analyze the stability of [(2.2), Lecture 4] using the eigenvalue methods just described. The recurrence (2.2) can be written as:

$$u_m^{n+1} = u_m^n + \mu \left(u_{m-1}^n - 2u_m^n + u_{m+1}^n \right), \qquad m = 1...M,$$

in the matrix form

$$\boldsymbol{u}_{h}^{n+1} = A_{h} \boldsymbol{u}_{h}^{n}, \qquad A_{h} = I + \mu A_{*}, \qquad A_{*} = \begin{bmatrix} -2 & 1 \\ 1 & \ddots & \ddots \\ & \ddots & \ddots & 1 \\ & & 1 - 2 \end{bmatrix}_{M \times M}$$

Here A_* is Toeplitz, symmetric, tridiagonal (TST), with $\lambda_{\ell}(A_*) = -4\sin^2 \frac{\pi\ell h}{2}$, hence $\lambda_{\ell}(A_h) = 1 - 4\mu \sin^2 \frac{\pi\ell h}{2}$, so that its spectrum lies within the interval $[\lambda_M, \lambda_1] = [1 - 4\mu \cos^2 \frac{\pi h}{2}, 1 - 4\mu \sin^2 \frac{\pi h}{2}]$. Since A_h is symmetric, we have

$$||A_h||_2 = \rho(A_h) = \begin{cases} |1 - 4\mu \sin^2 \frac{\pi h}{2}| \le 1, & \mu \le \frac{1}{2}, \\ |1 - 4\mu \cos^2 \frac{\pi h}{2}| > 1, & \mu > \frac{1}{2} & (h \le h_\mu). \end{cases}$$

We recover the fact that the method is stable for $\mu \leq 1/2$.

²Note that if $\|\cdot\|$ is the normalized Euclidean norm, then $\|A\mathbf{x}\|/\|\mathbf{x}\| = \|A\mathbf{x}\|_2/\|\mathbf{x}\|_2$ where $\|x\|_2 = (\sum_i |x_i|^2)^{1/2}$ is the usual (unnormalized) Euclidean norm