Mathematical Tripos Part II: Michaelmas Term 2023 Numerical Analysis - Lecture 7

Fourier analysis of stability Let us now assume a recurrence of the form

$$
\begin{equation*}
\sum_{k=r}^{s} b_{k} u_{m+k}^{n+1}=\sum_{k=r}^{s} c_{k} u_{m+k}^{n}, \quad n \in \mathbb{Z}^{+}, \quad m \in \mathbb{Z} \tag{2.5}
\end{equation*}
$$

Within our framework of discretizing PDEs of evolution, this corresponds to $-\infty<x<\infty$ in the underlying PDE and so there are no explicit boundary conditions: this is known as a Cauchy problem. The coefficients b_{k} and c_{k} are independent of m, n, but typically depend upon μ. We investigate stability by Fourier analysis. Note that it doesn't matter what is the underlying PDE: numerical stability is a feature of algebraic recurrences, not of PDEs!

Let $\boldsymbol{v}=\left(v_{m}\right)_{m \in \mathbb{Z}} \in \ell_{2}[\mathbb{Z}]$. Its Fourier transform is the function

$$
\widehat{v}(\theta)=\sum_{m \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i} m \theta} v_{m}, \quad-\pi \leq \theta \leq \pi .
$$

We equip sequences and functions with the norms

$$
\|\boldsymbol{v}\|=\left\{\sum_{m \in \mathbb{Z}}\left|v_{m}\right|^{2}\right\}^{\frac{1}{2}} \quad \text { and } \quad\|\widehat{v}\|_{*}=\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\widehat{v}(\theta)|^{2} d \theta\right\}^{\frac{1}{2}}
$$

Lemma 2.11 (Parseval's identity) For any $\boldsymbol{v} \in \ell_{2}[\mathbb{Z}]$, we have $\|\boldsymbol{v}\|=\|\widehat{v}\|_{*}$.
Proof. By definition,

$$
\begin{aligned}
\|\widehat{v}\|_{*}^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\sum_{m \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i} m \theta} v_{m}\right|^{2} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} v_{m} \bar{v}_{k} \mathrm{e}^{-\mathrm{i}(m-k) \theta} d \theta \\
& =\frac{1}{2 \pi} \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} v_{m} \bar{v}_{k} \int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{i}(m-k) \theta} d \theta \stackrel{(*)}{=} \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} v_{m} \bar{v}_{k} \delta_{m-k}=\|\boldsymbol{v}\|^{2}
\end{aligned}
$$

where equality $(*)$ is due to the fact that

$$
\int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{i} \ell \theta} d \theta= \begin{cases}2 \pi, & \ell=0 \\ 0, & \ell \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

The implication of the lemma is that the Fourier transform is an isometry of the Euclidean norm. This is an important reason underlying its many applications in mathematics and beyond.

Analysis 2.12 (Fourier analysis of stability) For $\theta \in[-\pi, \pi]$, let $\widehat{u}^{n}(\theta)=\sum_{m \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i} m \theta} u_{m}^{n}$ be the Fourier transform of the sequence $\boldsymbol{u}^{n} \in \ell_{2}[\mathbb{Z}]$. We multiply the discretized equations (2.5) by $\mathrm{e}^{-\mathrm{i} m \theta}$ and sum up for $m \in \mathbb{Z}$. Thus, the left-hand side yields

$$
\begin{aligned}
\sum_{m=-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} m \theta} \sum_{k=r}^{s} b_{k} u_{m+k}^{n+1} & =\sum_{k=r}^{s} b_{k} \sum_{m=-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} m \theta} u_{m+k}^{n+1} \\
& =\sum_{k=r}^{s} b_{k} \sum_{m=-\infty}^{\infty} \mathrm{e}^{-\mathrm{i}(m-k) \theta} u_{m}^{n+1}=\left(\sum_{k=r}^{s} b_{k} \mathrm{e}^{\mathrm{i} k \theta}\right) \widehat{u}^{n+1}(\theta)
\end{aligned}
$$

Similarly manipulating the right-hand side, we deduce that

$$
\begin{equation*}
\widehat{u}^{n+1}(\theta)=H(\theta) \widehat{u}^{n}(\theta), \quad \text { where } \quad H(\theta)=\frac{\sum_{k=r}^{s} c_{k} \mathrm{e}^{\mathrm{i} k \theta}}{\sum_{k=r}^{s} b_{k} \mathrm{e}^{\mathrm{i} k \theta}} . \tag{2.6}
\end{equation*}
$$

The function H is sometimes called the amplification factor of the recurrence (2.5)

Theorem 2.13 The method (2.5) is stable $\Leftrightarrow|H(\theta)| \leq 1$ for all $\theta \in[-\pi, \pi]$.
Proof. The definition of stability is equivalent to the statement that there exists $c>0$ such that $\left\|\boldsymbol{u}^{n}\right\| \leq c$ for all $n \in \mathbb{Z}^{+}$. The Fourier transform being an isometry, stability is thus equivalent to $\left\|\widehat{u}^{n}\right\|_{*} \leq c$ for all $n \in \mathbb{Z}^{+}$. Iterating (2.6), we obtain

$$
\begin{equation*}
\widehat{u}^{n}(\theta)=[H(\theta)]^{n} \widehat{u}^{0}(\theta), \quad|\theta| \leq \pi, \quad n \in \mathbb{Z}^{+} \tag{2.7}
\end{equation*}
$$

1) Assume first that $|H(\theta)| \leq 1$ for all $|\theta| \leq \pi$. Then, by (2.7),

$$
\left|\widehat{u}^{n}(\theta)\right| \leq\left|\widehat{u}^{0}(\theta)\right| \quad \Rightarrow \quad\left\|\widehat{u}^{n}\right\|_{*}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\widehat{u}^{n}(\theta)\right|^{2} \mathrm{~d} \theta \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\widehat{u}^{0}(\theta)\right|^{2} \mathrm{~d} \theta=\left\|\widehat{u}^{0}\right\|_{*}^{2} .
$$

Hence stability.
2) Suppose, on the other hand, that there exists $\theta_{0} \in[-\pi, \pi]$ such that $\left|H\left(\theta_{0}\right)\right|=1+2 \epsilon>1$, say. Since H is continuous, there exist $-\pi \leq \theta_{1}<\theta_{2} \leq \pi$ such that $|H(\theta)| \geq 1+\epsilon$ for all $\theta \in\left[\theta_{1}, \theta_{2}\right]$. We set $\eta=\theta_{2}-\theta_{1}$ and choose as our initial condition the function (or the $\ell_{2}[\mathbb{Z}]$-sequence)

$$
\widehat{u}^{0}(\theta)=\left\{\begin{array}{cl}
\sqrt{\frac{2 \pi}{\eta}}, & \theta_{1} \leq \theta \leq \theta_{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

Then

$$
\begin{aligned}
\left\|\widehat{u}^{n}\right\|_{*}^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|H(\theta)|^{2 n}\left|\widehat{u}^{0}(\theta)\right|^{2} \mathrm{~d} \theta=\frac{1}{2 \pi} \int_{\theta_{1}}^{\theta_{2}}|H(\theta)|^{2 n}\left|\widehat{u}^{0}(\theta)\right|^{2} \mathrm{~d} \theta \\
& \geq \frac{1}{2 \pi}(1+\epsilon)^{2 n} \int_{\theta_{1}}^{\theta_{2}} \frac{2 \pi}{\eta} \mathrm{~d} \theta=(1+\epsilon)^{2 n} \rightarrow \infty \quad(n \rightarrow \infty)
\end{aligned}
$$

We deduce that the method is unstable.

Examples Consider the Cauchy problem for the diffusion equation.

1) For the Euler method

$$
u_{m}^{n+1}=u_{m}^{n}+\mu\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right),
$$

we obtain

$$
H(\theta)=1+\mu\left(\mathrm{e}^{-\mathrm{i} \theta}-2+\mathrm{e}^{\mathrm{i} \theta}\right)=1-4 \mu \sin ^{2} \frac{\theta}{2} \in[1-4 \mu, 1]
$$

thus the method is stable iff $\mu \leq \frac{1}{2}$.
2) For the backward Euler method

$$
u_{m}^{n+1}-\mu\left(u_{m-1}^{n+1}-2 u_{m}^{n+1}+u_{m+1}^{n+1}\right)=u_{m}^{n},
$$

we have

$$
H(\theta)=\left[1-\mu\left(\mathrm{e}^{-\mathrm{i} \theta}-2+\mathrm{e}^{\mathrm{i} \theta}\right)\right]^{-1}=\left[1+4 \mu \sin ^{2} \frac{\theta}{2}\right]^{-1} \in(0,1]
$$

thus stability for all μ.
3) The Crank-Nicolson scheme

$$
u_{m}^{n+1}-\frac{1}{2} \mu\left(u_{m-1}^{n+1}-2 u_{m}^{n+1}+u_{m+1}^{n+1}\right)=u_{m}^{n}+\frac{1}{2} \mu\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right),
$$

results in

$$
H(\theta)=\frac{1+\frac{1}{2} \mu\left(\mathrm{e}^{-\mathrm{i} \theta}-2+\mathrm{e}^{\mathrm{i} \theta}\right)}{1-\frac{1}{2} \mu\left(\mathrm{e}^{-\mathrm{i} \theta}-2+\mathrm{e}^{\mathrm{i} \theta}\right)}=\frac{1-2 \mu \sin ^{2} \frac{\theta}{2}}{1+2 \mu \sin ^{2} \frac{\theta}{2}} \in(-1,1]
$$

Hence stability for all $\mu>0$.

