Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis – Lecture 8

We continue to study stability of discretization schemes using the Fourier analytic method from the previous lecture.

Advection equation We look at the *advection equation* which we already considered in Lecture 6.

$$u_t = u_x, t \ge 0, (2.6)$$

where u = u(x, t). It is given with the initial condition $u(x, 0) = \varphi(x)$. The exact solution of (2.6) is simply $u(x, t) = \varphi(x + t)$, a unilateral shift leftwards.

1) Downwind instability: Consider the discretization $\frac{\partial u_m(t)}{\partial x} \approx \frac{1}{2h} \left[u_m(t) - u_{m-1}(t) \right]$, so coming to the ODE $u_m'(t) = \frac{1}{2h} \left[u_m(t) - u_{m-1}(t) \right]$. For the Euler method, the outcome is

$$u_m^{n+1} = u_m^n + \mu(u_m^n - u_{m-1}^n), \quad n \in \mathbb{Z}_+.$$

We can analyze the stability of this method using Fourier analysis. The amplification factor is

$$H(\theta) = 1 + \mu - \mu e^{-i\theta}.$$

We see that for $\theta = \pi/2$, $|H(\theta)|^2 = (1 + \mu)^2 + \mu^2 > 1$, and so the method is unstable for all $\mu > 0$.

2) *Upwind scheme*: If we semidiscretize $\frac{\partial u_m(t)}{\partial x} \approx \frac{1}{h} \left[u_{m+1}(t) - u_m(t) \right]$, and solve the ODE again by Euler's method, then the result is

$$u_m^{n+1} = u_m^n + \mu(u_{m+1}^n - u_m^n), \quad n \in \mathbb{Z}_+$$
(2.7)

The local error is $\mathcal{O}(k^2+kh)$ which is $\mathcal{O}(h^2)$ for a fixed μ , hence convergence if the method is stable. We can again use Fourier analysis to analyze stability. The amplification factor is

$$H(\theta) = 1 - \mu + \mu e^{i\theta}$$

and we see that $|H(\theta)| = |1 - \mu + \mu e^{i\theta}| \le |1 - \mu| + \mu = 1$ for $\mu \in [0, 1]$. Hence we have stability for $\mu \le 1$. If $\mu > 1$, then note that $|H(\pi)| = |1 - 2\mu| > 1$, and so we have instability for $\mu > 1$.

Matlab demo: Download the Matlab GUI for Solving the Advection Equation, Upwinding and Stability from https://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/index.html and solve the advection equation (2.6) with the different methods provided in the demonstration. Experience what can go wrong when "winding" in the wrong direction!

3) Leap-frog method: We semidicretize (2.6) as $\frac{\partial u_m(t)}{\partial x} \approx \frac{1}{2h} \left[u_{m+1}(t) - u_{m-1}(t) \right]$, but now solve the ODE with the second-order midpoint rule

$$\boldsymbol{y}_{n+1} = \boldsymbol{y}_{n-1} + 2k\boldsymbol{f}(t_n, \boldsymbol{y}_n), \qquad n \in \mathbb{Z}_+.$$

The outcome is the two-step *leapfrog* method

$$u_m^{n+1} = \mu \left(u_{m+1}^n - u_{m-1}^n \right) + u_m^{n-1}. \tag{2.8}$$

The error is now $\mathcal{O}(k^3+kh^2)=\mathcal{O}(h^3)$. We analyse stability by the Fourier technique. Thus, proceeding as before,

$$\widehat{u}^{n+1}(\theta) = \mu \left(e^{i\theta} - e^{-i\theta} \right) \widehat{u}^n(\theta) + \widehat{u}^{n-1}(\theta)$$
(2.9)

whence

$$\widehat{u}^{n+1}(\theta) - 2i\mu \sin\theta \,\widehat{u}^n(\theta) - \widehat{u}^{n-1}(\theta) = 0, \qquad n \in \mathbb{Z}_+$$

and our goal is to determine values of μ such that $|\widehat{u}^n(\theta)|$ is uniformly bounded for all n, θ . This is a difference equation $w_{n+1} + bw_n + cw_{n-1} = 0$ with the general solution $w_n = c_1\lambda_1^n + c_2\lambda_2^n$, where λ_1, λ_2 are the roots of the characteristic equation $\lambda^2 + b\lambda + c = 0$, and c_1, c_2 are constants, dependent on the initial values w_0 and w_1 . If $\lambda_1 = \lambda_2$, then solution is $w_n = (c_1 + c_2n)\lambda^n$. In our case, we obtain

$$\lambda_{1,2}(\theta) = i\mu \sin \theta \pm \sqrt{1 - \mu^2 \sin^2 \theta}$$
.

Stability is equivalent to $|\lambda_{1,2}(\theta)| \le 1$ for all θ and this is true if and only if $\mu \le 1$.

The wave equation Consider the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \qquad t \ge 0,$$

given with initial conditions u(x,0) and $u_t(x,0)=\frac{\partial u}{\partial t}(x,0)$. The usual approximation looks as follows

$$u_m^{n+1} - 2u_m^n + u_m^{n-1} = \mu(u_{m+1}^n - 2u_m^n + u_{m-1}^n),$$

with the Courant number being now $\mu = k^2/h^2$.

The Fourier analysis (for Cauchy problem) provides

$$\widehat{u}^{n+1}(\theta) - 2\widehat{u}^n(\theta) + \widehat{u}^{n-1}(\theta) = -4\mu \sin^2 \frac{\theta}{2} \widehat{u}^n(\theta),$$

with the characteristic equation $\lambda^2 - 2(1 - 2\mu\sin^2\frac{\theta}{2})\lambda + 1 = 0$. The product of the roots is one, therefore stability (that requires the moduli of both λ to be at most one) is equivalent to the roots being complex conjugate, so we require

$$(1 - 2\mu\sin^2\frac{\theta}{2})^2 \le 1.$$

This condition is achieved if and only if $\mu=k^2/h^2\leq 1$.