Dr H. Fawzi

Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis — Lecture 9
The diffusion equation in two space dimensions We are solving

0

ailf“:v%, 0<a,y<l1, t>0, 2.11)
where u = u(z, y, t), together with initial conditions at ¢ = 0 and Dirichlet boundary conditions at 0€2, where
Q =[0,1] x [0, 00). It is straightforward to generalize our derivation of numerical algorithms, e.g. by semi-

discretization (also known as the method of lines). Thus, let wg ., (t) ~ w(fh, mh,t), where h = Az = Ay,
and let uy ., ~ ug,m (nk) where k = At. The five-point formula results in

/ 1
U = 72 (Ue—1,m + Ue1,m + Uem—1 + Uemt1 — dUem),

or in the matrix form, assuming zero Dirichlet boundary conditions
u = 5Am, u=(uy,) €RY, (2.12)

where A, is the block TST (Toeplitz Symmetric Tridiagonal) matrix of the five-point scheme:

HI —41
Ac= | Do E= ] N
I H 1 -4
1) The Euler method yields
u?jnl = Uf (UG gy F UGt UG 1 U 1 — UG ), (2.13)

or in the matrix form
u" = Aum, A=1+pA,

% = (AA_$t)2' The local error is n = O(k*+kh?) = O(k?). To analyse stability, we notice

that A is symmetric, hence normal, and its eigenvalues are related to those of A, by the rule

where, as before, i1 =

Prop_.1.12

Aeo(A) = 1+ g o(AL) 1 g (sin? A - sin? T

Consequently,

sup p(A) = max{1, |1 — 8ul}, hence p<i <« stability.
h>0

We could also have analyzed the stability of the discretization scheme using Fourier analysis, assuming
we extend the range of (z,y) in 2.11) from 0 < z,y < 1to z,y € R. A 2D Fourier transform reads

A0, 9) = Y ugme” )
L,meEZ

and all our results readily generalize. In particular, the Fourier transform is an isometry from ¢5[Z?] to
Lo([—m,7)?), ie.

(3 k) " =slull =l o= (55 [ [ a.0paas) ™

LmEZ
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and the method is stable iff |H(6,4)| < 1 for all 8,4 € [—=,n]. The proofs are an easy elaboration on the
one-dimensional theory. Insofar as the Euler method (2.13) is concerned,

HO,0) =14 p (e +elf 47 46¥ —4 =1—-4pu sian—i—sin2£ ,
2 2

and we again deduce stability if and only if y < 1.
2) Crank-Nicolson in 2D: Applying the trapezoidal rule to our semi-dicretization (2.12) we obtain the
two-dimensional Crank-Nicolson method:

(I — uA)umtt = (I + pA)u”, (2.14)

in which we move from the n-th to the (n+1)-st level by solving the system of linear equations Bu"*! =
Cu", or u™! = B~1Cu". For stability, similarly to the one-dimensional case, the eigenvalue analysis
implies that A = B~1C is normal and shares the same eigenvectors with B and C, hence

ANC) 1+ 3uA(AL)
AB) 11— 3uA(A)

AA) = IA(A)] < Tas A(A,) <0

and the method is stable for all 1. The same result can be obtained through the Fourier analysis.
Implementing the Crank-Nicolson method requires solving the linear system Bu"*' = Cu" at each

step. The matrix B = I — % 1A, has a structure similar to that of A,, so we may apply the fast Poisson

solver seen in Lectures 3 and 4. The total computational cost per iteration is O(M?log M) for a M x M
discretization grid.

Matlab demo: Download the Matlab GUI for Solving the Wave and Diffusion Equations in 2D from http://
www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html| and solve the
diffusion equation for different initial conditions. For the numerical solution of the equation you
can choose from the Euler method and the Crank-Nicolson scheme. The GUI allows you to solve the wave
equation as well. Compare the behaviour of solutions!

Splitting

In all the examples of semi-discretization we have seen so far, we always reach a linear system of ODE of
the form:
u = Au, u(0) = uo. (2.15)

The solution of this linear system of ODE is given by
u(t) = eug (2.16)

where the matrix exponential function is defined by e := "7 %Bk. It is easily verified that det4/dt =
Ae'4, therefore is indeed a solution of (2.15).

If A can be diagonalized A = VDV 1, then !4 = Ve!PV ~1 where ! is the diagonal matrix consisting
diag (e*Pit). As such one can compute the solution of @ exactly. However computing an eigenvalue de-
composition can be costly, and so one would like to consider more efficient methods, based on the solution
of sparse linear systems instead.

Observe that one-step methods for solving are approximating a matrix exponential. Indeed, with
k = At, we have:

Euler: u"tt = (I +kA)u, e* =1+ 2+ O(22);
Implicit Euler: u"tl = (I — kA)~tun, e” = (1—2)"1+0(2%);
_ 1+%z

Trapezoidal Rule: u"t = (I — 1kA) ™" (I + LkA)u", e

+0(2%).

= 1
1—§z

In practice the matrix A is very sparse, and this can be exploited when solving linear systems e.g., for the
implicit Euler or Trapezoidal Rule.
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Splitting In many cases, the matrix A is naturally expressed as a sum of two matrices, A = B + C. For
example, when discretizing the diffusion equation in 2D with zero boundary conditions, we have A =

72 (Ay + Ay) where 5 A, € RM *xM? corresponds to the 3-point discretization of 8‘3—;, and 774, € RM I
corresponds to the 3-point discretization of 80—;2. In matrix notations, if the grid points are ordered by
columns, then we have:

97 I G -21
A= | L A= 9. G=| Lo [erRMM @)
I -21 G 1 -2

Remark: It is convenient to note that A, = G ® I and A, = I ® G, where ® is the Kronecker product of
matrices (kron in Matlab) defined by

AllB A12B N AlmAB
Ang AQQB N AQmAB

A®B: ] ERTLARBXmAmB
AwaB ... ... Aw.m.B

where A € R"4*™4 and B € R"58X™5,
In general, exp(t(B + C)) # exp(tB) exp(tC). Equality holds however when B and C' commute.

Proposition 2.25 For any matrices B, C,
e!BHC) = !BelC 4 L2(OB — BO) + O(1). (2.18)

If B and C commute, then eP+¢ = eBeC.

tBotC t(B+C).

Proof. We Taylor-expand both expressions e and e

e!Pe!C = (I +tB +t*B%/2 + O(t*)(I +tC +t2C*/2 + O(t?))
=I+t(B+0C)+ 5(32 + C? 4+ 2BC) + O(t%)

and

+E(B+C)?+0(H)
+ £ 5 (B?+C?+ BC +CB) + O(t%).

Equation (2.18) follows.
When B and C' commute, we can write:

:ikl3+c Zkl Z ()Blez ii,lj,Bicj:eBeC

1,5=0

where in the second step we used the fact that B and C' commute. O
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