
Dr H. Fawzi

Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis – Lecture 9

The diffusion equation in two space dimensions We are solving

∂u

∂t
= ∇2u, 0 ≤ x, y ≤ 1, t ≥ 0, (2.11)

where u = u(x, y, t), together with initial conditions at t = 0 and Dirichlet boundary conditions at ∂Ω, where
Ω = [0, 1]2× [0,∞). It is straightforward to generalize our derivation of numerical algorithms, e.g. by semi-
discretization (also known as the method of lines). Thus, let u`,m(t) ≈ u(`h,mh, t), where h = ∆x = ∆y,
and let un`,m ≈ u`,m(nk) where k = ∆t. The five-point formula results in

u′`,m = 1
h2

(u`−1,m + u`+1,m + u`,m−1 + u`,m+1 − 4u`,m),

or in the matrix form, assuming zero Dirichlet boundary conditions

u′ = 1
h2
A∗u, u = (u`,m) ∈ RN , (2.12)

where A∗ is the block TST (Toeplitz Symmetric Tridiagonal) matrix of the five-point scheme:

A∗ =


H I

I
. . . . . .. . . . . . I

I H

 , H =


−4 1

1
. . . . . .. . . . . . 1

1 −4

 .
1) The Euler method yields

un+1
`,m = un`,m + µ(un`−1,m + un`+1,m + un`,m−1 + un`,m+1 − 4un`,m), (2.13)

or in the matrix form
un+1 = Aun, A = I + µA∗

where, as before, µ = k
h2

= ∆t
(∆x)2

. The local error is η = O(k2+kh2) = O(k2). To analyse stability, we notice
that A is symmetric, hence normal, and its eigenvalues are related to those of A∗ by the rule

λk,`(A) = 1 + µλk,`(A∗)
Prop. 1.12

= 1− 4µ
(

sin2 πkh
2

+ sin2 π`h
2

)
.

Consequently,
sup
h>0

ρ(A) = max{1, |1− 8µ|}, hence µ ≤ 1
4 ⇔ stability.

We could also have analyzed the stability of the discretization scheme using Fourier analysis, assuming
we extend the range of (x, y) in (2.11) from 0 ≤ x, y ≤ 1 to x, y ∈ R. A 2D Fourier transform reads

û(θ, ψ) =
∑
`,m∈Z

u`,me−i(`θ+mψ)

and all our results readily generalize. In particular, the Fourier transform is an isometry from `2[Z2] to
L2([−π, π]2), i.e. ( ∑

`,m∈Z
|u`,m|2

)1/2
=: ‖u‖ = ‖û‖∗ :=

( 1

4π2

∫ π

−π

∫ π

−π
|û(θ, ψ)|2 dθ dψ

)1/2
,

17



and the method is stable iff |H(θ, ψ)| ≤ 1 for all θ, ψ ∈ [−π, π]. The proofs are an easy elaboration on the
one-dimensional theory. Insofar as the Euler method (2.13) is concerned,

H(θ, ψ) = 1 + µ
(
e−iθ + eiθ + e−iψ + eiψ − 4

)
= 1− 4µ

(
sin2 θ

2
+ sin2 ψ

2

)
,

and we again deduce stability if and only if µ ≤ 1
4 .

2) Crank-Nicolson in 2D: Applying the trapezoidal rule to our semi-dicretization (2.12) we obtain the
two-dimensional Crank-Nicolson method:

(I − 1
2
µA∗)u

n+1 = (I + 1
2
µA∗)u

n , (2.14)

in which we move from the n-th to the (n+1)-st level by solving the system of linear equations Bun+1 =
Cun, or un+1 = B−1Cun. For stability, similarly to the one-dimensional case, the eigenvalue analysis
implies that A = B−1C is normal and shares the same eigenvectors with B and C, hence

λ(A) =
λ(C)

λ(B)
=

1 + 1
2µλ(A∗)

1− 1
2µλ(A∗)

⇒ |λ(A)| < 1 as λ(A∗) < 0

and the method is stable for all µ. The same result can be obtained through the Fourier analysis.
Implementing the Crank-Nicolson method requires solving the linear system Bun+1 = Cun at each

step. The matrix B = I − 1
2
µA∗ has a structure similar to that of A∗, so we may apply the fast Poisson

solver seen in Lectures 3 and 4. The total computational cost per iteration is O(M2 logM) for a M ×M
discretization grid.

Matlab demo: Download the Matlab GUI for Solving the Wave and Diffusion Equations in 2D from http://
www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html and solve the
diffusion equation (2.11) for different initial conditions. For the numerical solution of the equation you
can choose from the Euler method and the Crank-Nicolson scheme. The GUI allows you to solve the wave
equation as well. Compare the behaviour of solutions!

Splitting

In all the examples of semi-discretization we have seen so far, we always reach a linear system of ODE of
the form:

u′ = Au, u(0) = u0. (2.15)

The solution of this linear system of ODE is given by

u(t) = etAu0 (2.16)

where the matrix exponential function is defined by eB :=
∑∞
k=0

1
k!
Bk. It is easily verified that detA/dt =

AetA, therefore (2.16) is indeed a solution of (2.15).
If A can be diagonalized A = V DV −1, then etA = V etDV −1 where etD is the diagonal matrix consisting

diag (etDii). As such one can compute the solution of (2.15) exactly. However computing an eigenvalue de-
composition can be costly, and so one would like to consider more efficient methods, based on the solution
of sparse linear systems instead.

Observe that one-step methods for solving (2.15) are approximating a matrix exponential. Indeed, with
k = ∆t, we have:

Euler: un+1 = (I + kA)un, ez = 1 + z +O(z2);

Implicit Euler: un+1 = (I − kA)−1un, ez = (1− z)−1 +O(z2);

Trapezoidal Rule: un+1 =
(
I − 1

2kA
)−1 (

I + 1
2kA

)
un, ez =

1+ 1
2
z

1− 1
2
z

+O(z3).

In practice the matrix A is very sparse, and this can be exploited when solving linear systems e.g., for the
implicit Euler or Trapezoidal Rule.

18

http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html
http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/pdes_2d/pdes_2d.html


Splitting In many cases, the matrix A is naturally expressed as a sum of two matrices, A = B + C. For
example, when discretizing the diffusion equation in 2D with zero boundary conditions, we have A =
1
h2 (Ax +Ay) where 1

h2Ax ∈ RM2×M2

corresponds to the 3-point discretization of ∂2

∂x2 , and 1
h2Ay ∈ RM2×M2

corresponds to the 3-point discretization of ∂2

∂y2 . In matrix notations, if the grid points are ordered by
columns, then we have:

Ax =


−2I I

I
. . . . . .. . . . . . I

I −2I

 , Ay =

 GG . . .
G

 , G =


−2 1

1
. . . . . .. . . . . . 1

1 −2

 ∈ RM×M . (2.17)

Remark: It is convenient to note that Ax = G ⊗ I and Ay = I ⊗ G, where ⊗ is the Kronecker product of
matrices (kron in Matlab) defined by

A⊗B =


A11B A12B . . . A1mA

B
A21B A22B . . . A2mA

B
...

AnA1B . . . . . . AnAmA
B

 ∈ RnAnB×mAmB

where A ∈ RnA×mA and B ∈ RnB×mB .
In general, exp(t(B + C)) 6= exp(tB) exp(tC). Equality holds however when B and C commute.

Proposition 2.25 For any matrices B,C,

et(B+C) = etBetC + 1
2
t2(CB −BC) +O(t3). (2.18)

If B and C commute, then eB+C = eBeC .

Proof. We Taylor-expand both expressions etBetC and et(B+C):

etBetC = (I + tB + t2B2/2 +O(t3))(I + tC + t2C2/2 +O(t3))

= I + t(B + C) + t2

2
(B2 + C2 + 2BC) +O(t3)

and
et(B+C) = I + t(B + C) + t2

2
(B + C)2 +O(t3)

= I + t(B + C) + t2

2
(B2 + C2 +BC + CB) +O(t3).

Equation (2.18) follows.
When B and C commute, we can write:

eB+C =

∞∑
k=0

1

k!
(B + C)k =

∞∑
k=0

1

k!

∑
i+j=k

(
k

i

)
BiCj =

∞∑
i,j=0

1

i!j!
BiCj = eBeC

where in the second step we used the fact that B and C commute. �

19


