Dr H. Fawzi
Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis — Lecture 10

Splitting for the 2D diffusion equation Recall that for the 2D diffusion equation
du _ Pu  Pu

ot~ 022 | 07
using the five-point discretisation scheme for the Laplacian yields the following ODE
du 1
where the matrices A, and A, are expressed as A, = G ® I and A, = I ® G, where ® is the Kronecker
product, and G is the M x M tridiagonal matrix
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It is straightforward to verify that A, and A, commute; namely A, A, = AyA, = G ® G (this should
not come as a suprise since the operators 9%/9z% and §%/9y?, which A,/h* and A,/h* approximate, are
known to commute.) So we can write ek(As+4,)/h* = okAs/h* kA, /h®  This means that the solution of the

semi-discretized diffusion equation in 2D, with zero boundary conditions, satisfies
untl = ebAa/h® gk Ay /W%y n. (2.17)

Split Crank-Nicolson: In the split Crank-Nicolson scheme, we approximate each exponential map in (2.17)
by the rational function r(z) = (1 + z/2)(1 — z/2) !, which leads to

wt = (1 + 54,) (1 - 54,)7 (1 + 54,)(1 - 54,) 1. (2.18)

Note that computing u"+/2 = (I + %Ay)(I . %Ay)*lu" can be done efficiently in O(M?) time as A, is
block-diagonal, and the matrices G are tridiagonal (each tridiagonal solve requires O(M) time, and we
have M of these). Computing u"™ = (I + §A,)(I — 5A,)"'u™™/? can also be done in O(M?) time,
since A, is also block-diagonal provided we appropriately permute the rows and columns so that the grid
ordering is by rows instead of columns. This means that the update step (2.18) of Split-Crank-Nicolson can
be performed in time O(M?) and only requires tridiagonal matrix solves (no FFT needed).

One can easily verify stability of the split Crank-Nicolson scheme. Indeed, we can write

[ (pAz)r(pAy)ll2 < [Ir(pAz)ll2[lr(nAy)l2 <1

since, as seen in previous lectures, ||r(pA;)|l2 = ||[(L + %Ax)(l - %Ax)*lﬂg < 1 since A, is symmetric and
its eigenvalues are < 0. (Same for || (pA,)]|2.)
To check the consistency of the scheme, we need to show that the difference

u™t — r(pdy)r(pA,)u”

is O(k?), when 4" and u"*! hold the true solutions of the diffusion PDE at the corresponding time steps,
Le., untl = ek(@*/02°+0° /0" yn We can write A, = kA, /h? = k(;—; +0(h?)),and so r(pA,) = ek0* /" 4
O(k3 + kh?). Similaery,I(uzA,;)zz R0*/97% L O (k3 + kh2). Hence we get r(puA,)r(nd,) = ek0”/92% k% /0y* 4
O(k® + kh?) = P07 /02°+07/0y") 1 O(k® + kh?). This gives consistency since h? = k/u = O(k).
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2D diffusion with variable diffusion coefficient In general, however, the matrices Band Cin A = B+C
do not have to commute, as in the following example: The general diffusion equation with a diffusion
coefficient a(x,y) > 0is given by:

ou 0 Ou 0 ou
5= (slenge) + 5 (a3 ). @19

together with initial conditions on [0, 1]? and Dirichlet boundary conditions along [0, 1] x [0, 00). We
replace each space derivative by central differences at midpoints,

dg(¢) _ 9(&+ 5h) — g(€ — 3h)
¢~ h ’

resulting in the ODE system

) - Lla U +a U +a U +a U
m  — Rh2 — 5 mUU—=1,m 0+ 5 mUl+1l,m ¢,m— 3 Wem—1 £,m+ 3 Wem+1 (220)

- (affé,m + a@r%,m + G’Z,mfé + a[,m+%)ué,m:| .

Assuming zero boundary conditions, we have a system v’ = Au, and the matrix A can be splitas A =
h—lz (Az + Ay). Here, A, and A, are again constructed from the contribution of discretizations in the z- and
y-directions respectively, namely A, includes all the a,1 ,,, terms, and A, consists of the remaining a, . 1
components. The resulting operators A, and A, do not necessarily commute, and so the splitting scheme

. 2 2
urH—l — ekAz/h ekAy/h u™

will carry an error of O(k?), following Proposition 2.25.

Strang splitting: ~ One can obtain better splitting approximations of e

to prove that e2tBe!Ce3tB gives a O(t3) approximation of e'(B+C) je.,

t(B+C) | For example it is not hard
ol (B+C) _ (5tBtC FtB + (’)(tS). (2.21)

Remark 2.31 (Splitting of inhomogeneous systems) Our exposition so far has been limited to the case of
zero boundary conditions. In general, the linear ODE system is of the form

u = Au+b, u(0) = u?, (2.22)

where b originates in boundary conditions (and, possibly, in a forcing term f(x,y) in the original PDE
(2.19)). Note that our analysis should accommodate b = b(t), since boundary conditions might vary in
time! The exact solution of (2.22) is provided by the variation of constants formula

t
u(t) = et4u(0) +/ et=5)4p(s) ds, t>0,
0

therefore .
n+1
w(tni1) = e u(t,) + / eltnr1=9)4p(5) ds .
t

n

The integral on the right-hand side can be evaluated using quadrature. For example, the trapezoidal rule
Jo 9(r) dr = $k[g(0) + g(k)] + O(k?) gives

u(tnyr) ~ eu(ty) + Sk Ab(t,) + b(tni1)],

with a local error of O(k?). We can now replace exponentials with their splittings. For example, Strang’s
splitting (2.21), together with the rational function approximation r(z) = (1 + 2/2)/(1 — z/2) of the expo-
nential map, results in

utt = r(2kB) r(kC) r(3kB) [u” + Lkb"] + Skb"T

As before, everything reduces to (inexpensive) solution of tridiagonal systems.
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