Mathematical Tripos Part II: Michaelmas Term 2023 Numerical Analysis - Lecture 10

Splitting for the 2D diffusion equation Recall that for the 2D diffusion equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x^{2}}
$$

using the five-point discretisation scheme for the Laplacian yields the following ODE

$$
\frac{d \boldsymbol{u}}{d t}=\frac{1}{h^{2}}\left(A_{x}+A_{y}\right) \boldsymbol{u}
$$

where the matrices A_{x} and A_{y} are expressed as $A_{x}=G \otimes I$ and $A_{y}=I \otimes G$, where \otimes is the Kronecker product, and G is the $M \times M$ tridiagonal matrix

$$
G=\left[\begin{array}{rrrr}
-2 & 1 & & \\
1 & \ddots & \ddots & \\
& \ddots & 1 \\
& & 1 & -2
\end{array}\right] \in \mathbb{R}^{M \times M}
$$

It is straightforward to verify that A_{x} and A_{y} commute; namely $A_{x} A_{y}=A_{y} A_{x}=G \otimes G$ (this should not come as a suprise since the operators $\partial^{2} / \partial x^{2}$ and $\partial^{2} / \partial y^{2}$, which A_{x} / h^{2} and A_{y} / h^{2} approximate, are known to commute.) So we can write $\mathrm{e}^{k\left(A_{x}+A_{y}\right) / h^{2}}=\mathrm{e}^{k A_{x} / h^{2}} \mathrm{e}^{k A_{y} / h^{2}}$. This means that the solution of the semi-discretized diffusion equation in 2D, with zero boundary conditions, satisfies

$$
\begin{equation*}
\boldsymbol{u}^{n+1}=\mathrm{e}^{k A_{x} / h^{2}} \mathrm{e}^{k A_{y} / h^{2}} \boldsymbol{u}^{n} \tag{2.17}
\end{equation*}
$$

Split Crank-Nicolson: In the split Crank-Nicolson scheme, we approximate each exponential map in (2.17) by the rational function $r(z)=(1+z / 2)(1-z / 2)^{-1}$, which leads to

$$
\begin{equation*}
\boldsymbol{u}^{n+1}=\left(I+\frac{\mu}{2} A_{x}\right)\left(I-\frac{\mu}{2} A_{x}\right)^{-1}\left(I+\frac{\mu}{2} A_{y}\right)\left(I-\frac{\mu}{2} A_{y}\right)^{-1} \boldsymbol{u}^{n} \tag{2.18}
\end{equation*}
$$

Note that computing $\boldsymbol{u}^{n+1 / 2}=\left(I+\frac{\mu}{2} A_{y}\right)\left(I-\frac{\mu}{2} A_{y}\right)^{-1} \boldsymbol{u}^{n}$ can be done efficiently in $\mathcal{O}\left(M^{2}\right)$ time as A_{y} is block-diagonal, and the matrices G are tridiagonal (each tridiagonal solve requires $\mathcal{O}(M)$ time, and we have M of these). Computing $\boldsymbol{u}^{n+1}=\left(I+\frac{\mu}{2} A_{x}\right)\left(I-\frac{\mu}{2} A_{x}\right)^{-1} \boldsymbol{u}^{n+1 / 2}$ can also be done in $\mathcal{O}\left(M^{2}\right)$ time, since A_{x} is also block-diagonal provided we appropriately permute the rows and columns so that the grid ordering is by rows instead of columns. This means that the update step (2.18) of Split-Crank-Nicolson can be performed in time $\mathcal{O}\left(M^{2}\right)$ and only requires tridiagonal matrix solves (no FFT needed).

One can easily verify stability of the split Crank-Nicolson scheme. Indeed, we can write

$$
\left\|r\left(\mu A_{x}\right) r\left(\mu A_{y}\right)\right\|_{2} \leq\left\|r\left(\mu A_{x}\right)\right\|_{2}\left\|r\left(\mu A_{y}\right)\right\|_{2} \leq 1
$$

since, as seen in previous lectures, $\left\|r\left(\mu A_{x}\right)\right\|_{2}=\left\|\left(I+\frac{\mu}{2} A_{x}\right)\left(I-\frac{\mu}{2} A_{x}\right)^{-1}\right\|_{2} \leq 1$ since A_{x} is symmetric and its eigenvalues are ≤ 0. (Same for $\left\|r\left(\mu A_{y}\right)\right\|_{2}$.)

To check the consistency of the scheme, we need to show that the difference

$$
\boldsymbol{u}^{n+1}-r\left(\mu A_{x}\right) r\left(\mu A_{y}\right) \boldsymbol{u}^{n}
$$

is $\mathcal{O}\left(k^{2}\right)$, when \boldsymbol{u}^{n} and \boldsymbol{u}^{n+1} hold the true solutions of the diffusion PDE at the corresponding time steps, i.e., $\boldsymbol{u}^{n+1}=\mathrm{e}^{k\left(\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right)} \boldsymbol{u}^{n}$. We can write $\mu A_{y}=k A_{y} / h^{2}=k\left(\frac{\partial^{2}}{\partial y^{2}}+\mathcal{O}\left(h^{2}\right)\right)$, and so $r\left(\mu A_{y}\right)=\mathrm{e}^{k \partial^{2} / \partial y^{2}}+$ $\mathcal{O}\left(k^{3}+k h^{2}\right)$. Similarly, $r\left(\mu A_{x}\right)=\mathrm{e}^{k \partial^{2} / \partial x^{2}}+\mathcal{O}\left(k^{3}+k h^{2}\right)$. Hence we get $r\left(\mu A_{x}\right) r\left(\mu A_{y}\right)=\mathrm{e}^{k \partial^{2} / \partial x^{2}} \mathrm{e}^{k \partial^{2} / \partial y^{2}}+$ $\mathcal{O}\left(k^{3}+k h^{2}\right)=\mathrm{e}^{k\left(\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right)}+\mathcal{O}\left(k^{3}+k h^{2}\right)$. This gives consistency since $h^{2}=k / \mu=\mathcal{O}(k)$.

2D diffusion with variable diffusion coefficient In general, however, the matrices B and C in $A=B+C$ do not have to commute, as in the following example: The general diffusion equation with a diffusion coefficient $a(x, y)>0$ is given by:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(a(x, y) \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(a(x, y) \frac{\partial u}{\partial y}\right) \tag{2.19}
\end{equation*}
$$

together with initial conditions on $[0,1]^{2}$ and Dirichlet boundary conditions along $\partial[0,1]^{2} \times[0, \infty)$. We replace each space derivative by central differences at midpoints,

$$
\frac{\mathrm{d} g(\xi)}{\mathrm{d} \xi} \approx \frac{g\left(\xi+\frac{1}{2} h\right)-g\left(\xi-\frac{1}{2} h\right)}{h}
$$

resulting in the ODE system

$$
\begin{gather*}
u_{\ell, m}^{\prime}=\frac{1}{h^{2}}\left[a_{\ell-\frac{1}{2}, m} u_{\ell-1, m}+a_{\ell+\frac{1}{2}, m} u_{\ell+1, m}+a_{\ell, m-\frac{1}{2}} u_{\ell, m-1}+a_{\ell, m+\frac{1}{2}} u_{\ell, m+1}\right. \tag{2.20}\\
\left.-\left(a_{\ell-\frac{1}{2}, m}+a_{\ell+\frac{1}{2}, m}+a_{\ell, m-\frac{1}{2}}+a_{\ell, m+\frac{1}{2}}\right) u_{\ell, m}\right]
\end{gather*}
$$

Assuming zero boundary conditions, we have a system $\boldsymbol{u}^{\prime}=A \boldsymbol{u}$, and the matrix A can be split as $A=$ $\frac{1}{h^{2}}\left(A_{x}+A_{y}\right)$. Here, A_{x} and A_{y} are again constructed from the contribution of discretizations in the x - and y-directions respectively, namely A_{x} includes all the $a_{\ell \pm \frac{1}{2}, m}$ terms, and A_{y} consists of the remaining $a_{\ell, m \pm \frac{1}{2}}$ components. The resulting operators A_{x} and A_{y} do not necessarily commute, and so the splitting scheme

$$
\boldsymbol{u}^{n+1}=\mathrm{e}^{k A_{x} / h^{2}} \mathrm{e}^{k A_{y} / h^{2}} \boldsymbol{u}^{n}
$$

will carry an error of $\mathcal{O}\left(k^{2}\right)$, following Proposition 2.25.
Strang splitting: One can obtain better splitting approximations of $\mathrm{e}^{t(B+C)}$. For example it is not hard to prove that $\mathrm{e}^{\frac{1}{2} t B} \mathrm{e}^{t C} \mathrm{e}^{\frac{1}{2} t B}$ gives a $\mathcal{O}\left(t^{3}\right)$ approximation of $\mathrm{e}^{t(B+C)}$, i.e.,

$$
\begin{equation*}
\mathrm{e}^{t(B+C)}=\mathrm{e}^{\frac{1}{2} t B} \mathrm{e}^{t C} \mathrm{e}^{\frac{1}{2} t B}+\mathcal{O}\left(t^{3}\right) \tag{2.21}
\end{equation*}
$$

Remark 2.31 (Splitting of inhomogeneous systems) Our exposition so far has been limited to the case of zero boundary conditions. In general, the linear ODE system is of the form

$$
\begin{equation*}
\boldsymbol{u}^{\prime}=A \boldsymbol{u}+\boldsymbol{b}, \quad \boldsymbol{u}(0)=\boldsymbol{u}^{0} \tag{2.22}
\end{equation*}
$$

where \boldsymbol{b} originates in boundary conditions (and, possibly, in a forcing term $f(x, y)$ in the original PDE (2.19)). Note that our analysis should accommodate $\boldsymbol{b}=\boldsymbol{b}(t)$, since boundary conditions might vary in time! The exact solution of (2.22) is provided by the variation of constants formula

$$
\boldsymbol{u}(t)=\mathrm{e}^{t A} \boldsymbol{u}(0)+\int_{0}^{t} \mathrm{e}^{(t-s) A} \boldsymbol{b}(s) \mathrm{d} s, \quad t \geq 0
$$

therefore

$$
\boldsymbol{u}\left(t_{n+1}\right)=\mathrm{e}^{k A} \boldsymbol{u}\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} \mathrm{e}^{\left(t_{n+1}-s\right) A} \boldsymbol{b}(s) \mathrm{d} s
$$

The integral on the right-hand side can be evaluated using quadrature. For example, the trapezoidal rule $\int_{0}^{k} g(\tau) \mathrm{d} \tau=\frac{1}{2} k[g(0)+g(k)]+\mathcal{O}\left(k^{3}\right)$ gives

$$
\boldsymbol{u}\left(t_{n+1}\right) \approx \mathrm{e}^{k A} \boldsymbol{u}\left(t_{n}\right)+\frac{1}{2} k\left[\mathrm{e}^{k A} \boldsymbol{b}\left(t_{n}\right)+\boldsymbol{b}\left(t_{n+1}\right)\right]
$$

with a local error of $\mathcal{O}\left(k^{3}\right)$. We can now replace exponentials with their splittings. For example, Strang's splitting (2.21), together with the rational function approximation $r(z)=(1+z / 2) /(1-z / 2)$ of the exponential map, results in

$$
\boldsymbol{u}^{n+1}=r\left(\frac{1}{2} k B\right) r(k C) r\left(\frac{1}{2} k B\right)\left[\boldsymbol{u}^{n}+\frac{1}{2} k \boldsymbol{b}^{n}\right]+\frac{1}{2} k \boldsymbol{b}^{n+1}
$$

As before, everything reduces to (inexpensive) solution of tridiagonal systems.

