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Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis – Lecture 10

Splitting for the 2D diffusion equation Recall that for the 2D diffusion equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂x2

using the five-point discretisation scheme for the Laplacian yields the following ODE

du

dt
=

1

h2
(Ax +Ay)u

where the matrices Ax and Ay are expressed as Ax = G ⊗ I and Ay = I ⊗ G, where ⊗ is the Kronecker
product, and G is the M ×M tridiagonal matrix

G =


−2 1

1
. . . . . .. . . . . . 1

1 −2

 ∈ RM×M .

It is straightforward to verify that Ax and Ay commute; namely AxAy = AyAx = G ⊗ G (this should
not come as a suprise since the operators ∂2/∂x2 and ∂2/∂y2, which Ax/h

2 and Ay/h
2 approximate, are

known to commute.) So we can write ek(Ax+Ay)/h
2

= ekAx/h
2

ekAy/h
2

. This means that the solution of the
semi-discretized diffusion equation in 2D, with zero boundary conditions, satisfies

un+1 = ekAx/h
2

ekAy/h
2

un. (2.17)

Split Crank-Nicolson: In the split Crank-Nicolson scheme, we approximate each exponential map in (2.17)
by the rational function r(z) = (1 + z/2)(1− z/2)−1, which leads to

un+1 = (I +
µ
2
Ax)(I − µ

2
Ax)

−1(I +
µ
2
Ay)(I − µ

2
Ay)

−1un. (2.18)

Note that computing un+1/2 = (I +
µ
2
Ay)(I − µ

2
Ay)

−1un can be done efficiently in O(M2) time as Ay is
block-diagonal, and the matrices G are tridiagonal (each tridiagonal solve requires O(M) time, and we
have M of these). Computing un+1 = (I +

µ
2
Ax)(I − µ

2
Ax)

−1un+1/2 can also be done in O(M2) time,
since Ax is also block-diagonal provided we appropriately permute the rows and columns so that the grid
ordering is by rows instead of columns. This means that the update step (2.18) of Split-Crank-Nicolson can
be performed in time O(M2) and only requires tridiagonal matrix solves (no FFT needed).

One can easily verify stability of the split Crank-Nicolson scheme. Indeed, we can write

‖r(µAx)r(µAy)‖2 ≤ ‖r(µAx)‖2‖r(µAy)‖2 ≤ 1

since, as seen in previous lectures, ‖r(µAx)‖2 = ‖(I + µ
2
Ax)(I − µ

2
Ax)

−1‖2 ≤ 1 since Ax is symmetric and
its eigenvalues are ≤ 0. (Same for ‖r(µAy)‖2.)

To check the consistency of the scheme, we need to show that the difference

un+1 − r(µAx)r(µAy)u
n

is O(k2), when un and un+1 hold the true solutions of the diffusion PDE at the corresponding time steps,
i.e., un+1 = ek(∂

2/∂x2+∂2/∂y2)un. We can write µAy = kAy/h
2 = k( ∂

2

∂y2
+O(h2)), and so r(µAy) = ek∂

2/∂y2

+

O(k3 + kh2). Similarly, r(µAx) = ek∂
2/∂x2

+O(k3 + kh2). Hence we get r(µAx)r(µAy) = ek∂
2/∂x2

ek∂
2/∂y2

+

O(k3 + kh2) = ek(∂
2/∂x2+∂2/∂y2) +O(k3 + kh2). This gives consistency since h2 = k/µ = O(k).
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2D diffusion with variable diffusion coefficient In general, however, the matricesB and C inA = B+C
do not have to commute, as in the following example: The general diffusion equation with a diffusion
coefficient a(x, y) > 0 is given by:

∂u

∂t
=

∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
, (2.19)

together with initial conditions on [0, 1]2 and Dirichlet boundary conditions along ∂[0, 1]2× [0,∞). We
replace each space derivative by central differences at midpoints,

dg(ξ)

dξ
≈
g(ξ + 1

2
h)− g(ξ − 1

2
h)

h
,

resulting in the ODE system

u′`,m = 1
h2

[
a`− 1

2 ,m
u`−1,m + a`+ 1

2 ,m
u`+1,m + a`,m− 1

2
u`,m−1 + a`,m+ 1

2
u`,m+1

−
(
a`− 1

2 ,m
+ a`+ 1

2 ,m
+ a`,m− 1

2
+ a`,m+ 1

2

)
u`,m

]
.

(2.20)

Assuming zero boundary conditions, we have a system u′ = Au, and the matrix A can be split as A =
1
h2 (Ax + Ay). Here, Ax and Ay are again constructed from the contribution of discretizations in the x- and
y-directions respectively, namely Ax includes all the a`± 1

2 ,m
terms, and Ay consists of the remaining a`,m± 1

2

components. The resulting operators Ax and Ay do not necessarily commute, and so the splitting scheme

un+1 = ekAx/h
2

ekAy/h
2

un

will carry an error of O(k2), following Proposition 2.25.
Strang splitting: One can obtain better splitting approximations of et(B+C). For example it is not hard

to prove that e
1
2 tBetCe

1
2 tB gives a O(t3) approximation of et(B+C), i.e.,

et(B+C) = e
1
2 tBetCe

1
2 tB +O(t3). (2.21)

Remark 2.31 (Splitting of inhomogeneous systems) Our exposition so far has been limited to the case of
zero boundary conditions. In general, the linear ODE system is of the form

u′ = Au+ b, u(0) = u0, (2.22)

where b originates in boundary conditions (and, possibly, in a forcing term f(x, y) in the original PDE
(2.19)). Note that our analysis should accommodate b = b(t), since boundary conditions might vary in
time! The exact solution of (2.22) is provided by the variation of constants formula

u(t) = etAu(0) +

∫ t

0

e(t−s)Ab(s) ds, t ≥ 0,

therefore

u(tn+1) = ekAu(tn) +

∫ tn+1

tn

e(tn+1−s)Ab(s) ds .

The integral on the right-hand side can be evaluated using quadrature. For example, the trapezoidal rule∫ k

0
g(τ) dτ = 1

2
k[g(0) + g(k)] +O(k3) gives

u(tn+1) ≈ ekAu(tn) +
1
2
k[ekAb(tn) + b(tn+1)],

with a local error of O(k3). We can now replace exponentials with their splittings. For example, Strang’s
splitting (2.21), together with the rational function approximation r(z) = (1 + z/2)/(1 − z/2) of the expo-
nential map, results in

un+1 = r
(1
2
kB
)
r
(
kC
)
r
(1
2
kB
)[
un + 1

2
kbn

]
+ 1

2
kbn+1.

As before, everything reduces to (inexpensive) solution of tridiagonal systems.
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