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Numerical Analysis – Lecture 12

Computation of Fourier coefficients (DFT) When applying spectral methods, we often need to
compute the Fourier coefficients of the problem data, i.e., we need to compute integrals of the
form:

f̂n =
1

2

∫ 1

−1
f(t)e−iπnt dt, n ∈ Z. (3.3)

Call h(t) = f(t)e−iπnt. One simple way to approximate the integral of h on [−1, 1] is using the
rectangle rule: ∫ 1

−1
h(t) dt ≈ 2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
. (3.4)

This approximation happens to be exponentially convergent in N .

Theorem 3.8 Let h be a 2-periodic function such that its Fourier series is absolutely convergent. Let
I(h) =

∫ 1

−1 h(t)dt, and for an even integer N , let IN (h) = 2
N

∑N/2
k=−N/2+1 h

(
2k
N

)
. Then

IN (h)− I(h) = 2
∑

r∈Z,|r|≥1

ĥNr. (3.5)

As a consequence, if h is analytic on the horizontal strip {z ∈ C : |Im z| < a} and |h(z)| ≤ M for
|Im z| < a, then by letting c = e−aπ ∈ (0, 1), we have |IN (h)− I(h)| ≤ 4McN/(1− cN ).

Remark 3.9 Another consequence of the expression (3.5) is that IN (h) = I(h) if h is a trigonometric
polynomial of degree < N , i.e., if ĥn = 0 for |n| ≥ N . This is reminiscent of Gaussian quadrature rules
which are exact for polynomials up to degree 2N − 1. For more on the exponential convergence of the
rectangle rule for periodic analytic functions, we refer the interested reader to the following review article
The Exponentially Convergent Trapezoidal Rule, SIAM Review, 2014 by L. N. Trefethen, and J. A. C.
Weideman.

Proof. Let ωN = e2πi/N . Then we have

2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
=

2

N

N/2∑
k=−N/2+1

∞∑
n=−∞

ĥne
2πink/N =

2

N

∞∑
n=−∞

ĥn

N/2∑
k=−N/2+1

ωnkN .

Since ωNN = 1 we have

N/2∑
k=−N/2+1

ωnkN = ω
−n(N/2−1)
N

N−1∑
k=0

ωnkN =

{
N, n ≡ 0 (modN),

0, n 6≡ 0 (modN),

and we deduce that
2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
= 2

∞∑
r=−∞

ĥNr .

Since I(h) = 2ĥ0, we immediately obtain the expression (3.5).
For the second part of the theorem, the analyticity assumption guarantees, that the Fourier

coefficients |ĥn| decay exponentially fast, namely |ĥn| ≤ Mc|N | (see Lecture 11). In this case we
have

2
∑

r∈Z,|r|≥1

|ĥNr| ≤ 4M

∞∑
r=1

cNr = 4McN/(1− cN )

as desired.
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Remark 3.10 Applying the rectangle rule to the integral in (3.3) corresponds to the approximation

f̂n ≈
1

N

N/2∑
k=−N/2+1

f

(
2k

N

)
e−2ikπn/N .

We recognize that the right-hand side, for n = −N/2 + 1, . . . , N/2, corresponds to the discrete
Fourier transform of the sequence (yk) =

(
f( 2kN )

)
. Thus, one can compute the approximations to

f̂n using the FFT algorithm.

The Poisson equation We consider the Poisson equation

∇2u = f, −1 ≤ x, y ≤ 1, (3.6)

for which we are looking a periodic solution u(x + 2, y) = u(x, y) = u(x, y + 2). We assume f is
analytic and periodic. We have the Fourier expansion of f

f(x, y) =

∞∑
k,l=−∞

f̂k,le
iπ(kx+ly)

and seek the Fourier expansion of u

u(x, y) =

∞∑
k,l=−∞

ûk,le
iπ(kx+ly).

Since

∇2u(x, y) = −π2
∞∑

k,l=−∞

(k2 + l2)ûk,le
iπ(kx+ly),

equating the Fourier coefficients gives us

−π2(k2 + l2)ûk,l = f̂k,l, k, l ∈ Z.

A necessary condition for the above to have a solution is that f̂0,0 = 0. In this case, we have the
simple closed-form solution for the PDE:ûk,l = −

1

(k2 + l2)π2
f̂k,l, k, l ∈ Z, (k, l) 6= (0, 0)

û0,0 arbitrary.

Remark 3.11 Applying a spectral method to the Poisson equation is not representative for its
application to other PDEs. The reason is the special structure of the Poisson equation. In fact,
φk,l = eiπ(kx+ly) are the eigenfunctions of the Laplace operator with

∇2φk,l = −π2(k2 + l2)φk,l,

and they obey periodic boundary conditions.

General 2D diffusion equation We consider the more general diffusion PDE

∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
= f, −1 ≤ x, y ≤ 1,

with a(x, y) > 0, and a and f periodic, and we are looking for a periodic solution. If

u(x, y) =
∑
k,l∈Z

ûk,le
iπ(kx+ly)
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is the Fourier expansion of u, the bivariate versions of the algebra of Fourier expansions gives
(denoting ux = ∂u/∂x and uy = ∂u/∂y):

(̂ux)k,l = iπkûk,l

â · (ux)m,n =
∑
k,l∈Z

âm−k,n−l(iπk)ûk,l,
(3.7)

and similarly
(̂uy)k,l = iπlûk,l

â · (uy)m,n =
∑
k,l∈Z

âm−k,n−l(iπl)ûk,l.
(3.8)

This gives

−π2
∑
m,n∈Z

∑
k,l∈Z

(mk + nl) âm−k,n−lûk,le
iπ(mx+ny) =

∑
m,n∈Z

f̂m,ne
iπ(mx+ny) .

We look for an approximate solution where ûk,l = 0 for |k|, |l| > N/2. This means that the
inner sum can be restricted to |k|, |l| ≤ N/2. Then, we impose equality of the Fourier terms
corresponding to |n|, |m| ≤ N/2 only. This results in a linear system of (N + 1)2 equations in the
unknowns ûm,n, where m,n = −N/2...N/2:

N/2∑
k,l=−N/2

(mk + nl) âm−k,n−l ûk,l = −
1

π2
f̂m,n , m, n = −N/2...N/2 . (3.9)

By looking at the equation corresponding to (m,n) = (0, 0) we see that a necessary condition for
(3.9) to have a solution is that f̂0,0 = 0. We also see that û0,0 does not play a role in the linear
system above. Thus (3.9) really consists of (N + 1)2 − 1 equations in (N + 1)2 − 1 unknowns.

Discussion 3.12 (Analyticity and periodicity) The fast convergence of spectral methods rests on
two properties of the underlying problem: analyticity and periodicity. If one is not satisfied the
rate of convergence in general drops to polynomial. However, to a certain extent, we can relax
these two assumptions while still retaining the substantive advantages of Fourier expansions.

• Relaxing analyticity: In general, the speed of convergence of the truncated Fourier series of
a function f depends on the smoothness of the function. In fact, the smoother the function
the faster the truncated series converges, i.e., for f ∈ Cp(−1, 1) we receive an O(N−p) order
of convergence.

• Relaxing periodicity: Disappointingly, periodicity is necessary for spectral convergence. One
way around this is to change our set of basis functions, e.g., to Chebyshev polynomials.
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