Dr H. Fawzi
Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis — Lecture 13

Chebyshev polynomials The Chebyshev polynomial of degree n is defined as
T, (z) := cos(narccosz), =z € [—1,1], (3.14)

or equivalently, by the identity T),(cos ) = cos(nf) for 6 € [0, 2x].
1) The sequence (7},) obeys the three-term recurrence relation

To(z) =1, Ti(x) ==z,
Tni1(x) =22T,(z) — Th—1(z), n>1,

in particular, 7,, is indeed an algebraic polynomial of degree n, with the leading coefficient 2"~!. (The
recurrence is due to the equality cos(n+1)8+cos(n—1)0 = 2 cos 0 cos né via substitution x = cos 6, expressions
for Ty and T} are straightforward.)

2) Also, (T;,) forms a sequence of orthogonal polynomials with respect to the inner product (f, ). =

f_ll f(2)g(x)w(z)dz, with the weight function w(z) := (1 — 22)~'/2. Namely, we have
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Chebyshev expansion Since (7,)52, forms an orthogonal sequence, a function f such that | _11 |f(z)]Pw(z) do <
oo can be expanded in the series
= fuTu(2)
n=0

with the Chebyshev coefficients f,,. Making inner product of both sides with T}, and using orthogonality
yields
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where ¢g = 1 and ¢,, = 2 forn > 1.
Connection to the Fourier expansion. Letting « = costm and ¢(t) = f(cos(¢m)), we obtain
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Given that cos ntm = ("™ 4+ e~""'™), and using the Fourier expansion of the 2-periodic function g,

1
—7r/ f(costm)T,,(costm) dt = g/ g(t) cosntm dt . (3.17)
—1

~ i 1t
= Zgne”m, where g, = 5/ gt)e ™ dt, nezZ,
neZ -1

we continue (3.17) as

! dz
Tn = —nt9n);
/_1f(w) @) === 5@+ 0n)
and from (3.16) we deduce that
i /g\Oa n= 07
= 3.18
f {§n+§n=2§m n>1. ( )



Convergence speed of Chebyshev expansion Using the connection with Fourier series, one can show that
the Chebyshev expansion inherits the exponential convergence provided f can be analytically extended
from [—1, 1] to the so-called Bernstein ellipse.

Theorem 3.17 Let f be a function on [—1,1] such that it can be extended analytically to the Bernstein ellipse in

the complex plane
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B(a)=Jz=z+iyeC: + <1 3.19
(@) { cTETw cosh?(am)  sinh?(ar) } (.19)

where a > 0, and assume furthermore that |f(z)] < M for = € B(a). Then with ¢ = e~ %" € (0,1), we have
|l < 2Mc™ forn > 1, and |f(z) — S0 faTn(z)] < 2MeN /(1 - o).

Proof. Let g(t) = f(cos(tm)) = f((e®®™ + e~%™)/2) which is 2-periodic. Let S(a) = {z € C : |[Im 2| < a}, and
note that
t € S(a) < cos(tr) € B(a). (3.20)

(See below for justification.) Since f is assumed analytic on B(a), it follows that g is analytic on S(a). From
the theorem of Lecture 11, we know that |§,| < M e~o7I"l “and thus by (3.18), it follows that | fo\ < M and
|fn| < 2Me~ " for n > 1. Furthermore, we have, for any z € [—1,1]

N-1 0 e
(@) =Y faTu(@) < D0 1 fallTul@) < Y7 1ful < 2MeV/(1—¢)
n=0 n=N n=N

as desired.
It remains to prove (3.20). For b > 0 and = € R, we have
cos(x + ib) = %(ei(x-‘rib) + e—i(a:-i—ib)) _ %(e—beix + ebe—ix)

and thus Re (cos(z + ib)) = cosh(b) cos(z) and Im (cos(x + ib)) = — sinh(b) sin(x). This shows that {cos(z +
ib) : € R} is precisely the ellipse of equation 2%/ cosh(b)? + y?/ sinh(b)? = 1. O
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Figure 1: Bernstein ellipses B(a) as defined in (3.19) or different values of a > 0.

Remark 3.18 (Computing Chebyshev coefficients) As we have seen, for a general integrable function f, the
computation of its Chebyshev expansion is equivalent to the Fourier expansion of the function g(t) = f(costn).
Since the latter is 2-periodic, we can use a discrete Fourier transform (DFT) to compute the Chebyshev coefficients f,,.
[Actually, based on this connection, one can perform a direct fast Chebyshev transform].

28



The algebra of Chebyshev expansions In order to use spectral Galerkin methods with the Chebyshev
basis, we need to understand how Chebyshev expansion behaves under pointwise multiplication of func-
tions, and differentiation. Starting by the multiplication operation, we see that

To(x)Th(x) = cos(mb)cos(nh)
= 1lcos((m—n)0) + cos ((m +n)9)]
= % I:j_]TTL n|( )+ Tm+n( )}
and hence,
F@g(a) = 3 Fun@)- 3 0uTa@) = 5 3" Fiin [Tin-ni(@) + Trin(2)]
m=0 n=0 m,n=0
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k=0 m,n>0 m,n>0
m4n==k |m—n|=k

Lemma 3.19 (Derivatives of Chebyshev polynomials) We can express derivatives T, in terms of (I}) as fol-
lows,

Ts,, (x) = (2n) QZT% 1 (3.21)
Typpr(2) = 2n+1)[ )+2 Z Tor(x (3.22)
Proof. From (3.14), we deduce
B y ~ msinmf B
Tn(z) =cosmb = T, (z)= “and x =cosf.

So, for m = 2n, (3.21) follows from the identity 52228 — 23" cos(2k—1)6, which is verified as
2sin 6 Z cos (2k—1)0 = Z 2cos (2k—1)0sinf = Z [ sin2k60 — sin 2(k — 1)0] = sin 2n6.
k=1 k=1 k=1

sm(2n+1)
sin

For m = 2n + 1, (3.22) turns into identity =1+2%"}_, cos2kf, and that follows from
sin 6 - (1 +2 Z Ccos 2k6‘) =sinf + Z [sin(2k+1)0 — sin(2k — 1)0] = sin(2n + 1)6.
k=1 k=1
|

The lemma above allows us to express the Chebyshev coefficients of the derivative of a function f, in
terms of those of f. We get

o fL+3f3+5f5+
i =22fs +4fs +6f5+---)
Flo =20Bfs+5f+)
s =2(4fs+6f5+--)

In general, for the k’th derivative we get:

oo

fBn=cn > mf* 0 VE>1,
i

where ¢ = 1 and ¢,, = 2 forn > 1.
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