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Numerical Analysis – Lecture 13

Chebyshev polynomials The Chebyshev polynomial of degree n is defined as

Tn(x) := cos(n arccosx), x ∈ [−1, 1], (3.14)

or equivalently, by the identity Tn(cos θ) = cos(nθ) for θ ∈ [0, 2π].
1) The sequence (Tn) obeys the three-term recurrence relation

T0(x) ≡ 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1,

in particular, Tn is indeed an algebraic polynomial of degree n, with the leading coefficient 2n−1. (The
recurrence is due to the equality cos(n+1)θ+cos(n−1)θ = 2 cos θ cosnθ via substitution x = cos θ, expressions
for T0 and T1 are straightforward.)

2) Also, (Tn) forms a sequence of orthogonal polynomials with respect to the inner product (f, g)w :=∫ 1

−1 f(x)g(x)w(x)dx, with the weight function w(x) := (1− x2)−1/2. Namely, we have

(Tn, Tm)w =

∫ 1

−1
Tm(x)Tn(x)

dx√
1− x2

=

∫ π

0

cosmθ cosnθ dθ =


π, m = n = 0 ,
π
2 , m = n ≥ 1 ,

0, m 6= n .

(3.15)

Chebyshev expansion Since (Tn)∞n=0 forms an orthogonal sequence, a function f such that
∫ 1

−1 |f(x)|2w(x) dx <
∞ can be expanded in the series

f(x) =

∞∑
n=0

f̆nTn(x),

with the Chebyshev coefficients f̆n. Making inner product of both sides with Tn and using orthogonality
yields

(f, Tn)w = f̆n(Tn, Tn)w ⇒ f̆n =
(f, Tn)w

(Tn, Tn)w
=
cn
π

∫ 1

−1
f(x)Tn(x)

dx√
1− x2

, (3.16)

where c0 = 1 and cn = 2 for n ≥ 1.
Connection to the Fourier expansion. Letting x = cos tπ and g(t) = f(cos(tπ)), we obtain∫ 1

−1
f(x)Tn(x)

dx√
1− x2

= π

∫ 1

0

f(cos tπ)Tn(cos tπ) dt =
π

2

∫ 1

−1
g(t) cosntπ dt . (3.17)

Given that cosntπ = 1
2 (eintπ + e−intπ), and using the Fourier expansion of the 2-periodic function g,

g(t) =
∑
n∈Z

ĝneinπt, where ĝn =
1

2

∫ 1

−1
g(t)e−intπ dt, n ∈ Z ,

we continue (3.17) as ∫ 1

−1
f(x)Tn(x)

dx√
1− x2

=
π

2
(ĝ−n + ĝn) ,

and from (3.16) we deduce that

f̆n =

{
ĝ0, n = 0 ,

ĝ−n + ĝn = 2ĝn, n ≥ 1 .
(3.18)
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Convergence speed of Chebyshev expansion Using the connection with Fourier series, one can show that
the Chebyshev expansion inherits the exponential convergence provided f can be analytically extended
from [−1, 1] to the so-called Bernstein ellipse.

Theorem 3.17 Let f be a function on [−1, 1] such that it can be extended analytically to the Bernstein ellipse in
the complex plane

B(a) =

{
z = x+ iy ∈ C :

x2

cosh2(aπ)
+

y2

sinh2(aπ)
< 1

}
(3.19)

where a > 0, and assume furthermore that |f(z)| ≤ M for z ∈ B(a). Then with c = e−aπ ∈ (0, 1), we have
|f̆n| ≤ 2Mcn for n ≥ 1, and |f(x)−

∑N−1
n=0 f̆nTn(x)| ≤ 2McN/(1− c).

Proof. Let g(t) = f(cos(tπ)) = f((eitπ + e−itπ)/2) which is 2-periodic. Let S(a) = {z ∈ C : |Im z| < a}, and
note that

t ∈ S(a) ⇐⇒ cos(tπ) ∈ B(a). (3.20)

(See below for justification.) Since f is assumed analytic on B(a), it follows that g is analytic on S(a). From
the theorem of Lecture 11, we know that |ĝn| ≤ Me−aπ|n|, and thus by (3.18), it follows that |f̆0| ≤ M and
|f̆n| ≤ 2Me−aπn for n ≥ 1. Furthermore, we have, for any x ∈ [−1, 1]

|f(x)−
N−1∑
n=0

f̆nTn(x)| ≤
∞∑
n=N

|f̆n||Tn(x)| ≤
∞∑
n=N

|f̆n| ≤ 2McN/(1− c)

as desired.
It remains to prove (3.20). For b > 0 and x ∈ R, we have

cos(x+ ib) = 1
2
(ei(x+ib) + e−i(x+ib)) = 1

2
(e−beix + ebe−ix)

and thus Re (cos(x+ ib)) = cosh(b) cos(x) and Im (cos(x+ ib)) = − sinh(b) sin(x). This shows that {cos(x+
ib) : x ∈ R} is precisely the ellipse of equation x2/ cosh(b)2 + y2/ sinh(b)2 = 1. �
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Figure 1: Bernstein ellipses B(a) as defined in (3.19) or different values of a > 0.

Remark 3.18 (Computing Chebyshev coefficients) As we have seen, for a general integrable function f , the
computation of its Chebyshev expansion is equivalent to the Fourier expansion of the function g(t) = f(cos tπ).
Since the latter is 2-periodic, we can use a discrete Fourier transform (DFT) to compute the Chebyshev coefficients f̆n.
[Actually, based on this connection, one can perform a direct fast Chebyshev transform].
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The algebra of Chebyshev expansions In order to use spectral Galerkin methods with the Chebyshev
basis, we need to understand how Chebyshev expansion behaves under pointwise multiplication of func-
tions, and differentiation. Starting by the multiplication operation, we see that

Tm(x)Tn(x) = cos (mθ) cos (nθ)

= 1
2

[ cos ((m− n)θ) + cos ((m+ n)θ)]

= 1
2

[
T|m−n|(x) + Tm+n(x)

]
and hence,

f(x)g(x) =

∞∑
m=0

f̆mTm(x) ·
∞∑
n=0

ğnTn(x) =
1

2

∞∑
m,n=0

f̆mğn
[
T|m−n|(x) + Tm+n(x)

]

=
1

2

∞∑
k=0

Tk(x)

 ∑
m,n≥0
m+n=k

f̆mğn +
∑
m,n≥0
|m−n|=k

f̆mğn

 .

Lemma 3.19 (Derivatives of Chebyshev polynomials) We can express derivatives T ′n in terms of (Tk) as fol-
lows,

T ′2n(x) = (2n) · 2
n∑
k=1

T2k−1(x), (3.21)

T ′2n+1(x) = (2n+ 1)
[
T0(x) + 2

n∑
k=1

T2k(x)] . (3.22)

Proof. From (3.14), we deduce

Tm(x) = cosmθ ⇒ T ′m(x) =
m sinmθ

sin θ
x = cos θ .

So, for m = 2n, (3.21) follows from the identity sin 2nθ
sin θ = 2

∑n
k=1 cos(2k−1)θ, which is verified as

2 sin θ

n∑
k=1

cos (2k−1)θ =

n∑
k=1

2 cos (2k−1)θ sin θ =

n∑
k=1

[
sin 2kθ − sin 2(k − 1)θ

]
= sin 2nθ.

For m = 2n+ 1, (3.22) turns into identity sin(2n+1)θ
sin θ = 1 + 2

∑n
k=1 cos 2kθ, and that follows from

sin θ ·
(

1 + 2

n∑
k=1

cos 2kθ
)

= sin θ +

n∑
k=1

[
sin(2k+1)θ − sin(2k − 1)θ

]
= sin(2n+ 1)θ.

�
The lemma above allows us to express the Chebyshev coefficients of the derivative of a function f , in

terms of those of f . We get 

(

f ′ 0 = f̆1 + 3f̆3 + 5f̆5 + · · ·

(

f ′ 1 = 2(2f̆2 + 4f̆4 + 6f̆6 + · · · )

(

f ′ 2 = 2(3f̆3 + 5f̆5 + · · · )

(

f ′ 3 = 2(4f̆4 + 6f̆6 + · · · )
...

In general, for the k’th derivative we get:

(

f (k) n = cn

∞∑
m=n+1
n+m odd

m

(

f (k−1) m, ∀ k ≥ 1,

where c0 = 1 and cn = 2 for n ≥ 1.
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