Mathematical Tripos Part II: Michaelmas Term 2023
 Numerical Analysis - Lecture 14

The spectral method for evolutionary PDEs We consider the problem

$$
\begin{cases}\frac{\partial u(x, t)}{\partial t}=\mathcal{L} u(x, t), & x \in[-1,1], \tag{3.20}\\ u(x, 0)=g(x), & x \in[-1,1]\end{cases}
$$

We want to solve this problem by the method of lines (semi-discretization), using a spectral method for the approximation of u and its derivatives in the spatial variable x. Then, in a general spectral method, we seek solutions $u_{N}(x, t)$ with

$$
\begin{equation*}
u_{N}(x, t)=\sum_{n=0}^{N-1} c_{n}(t) \psi_{n}(x) \tag{3.21}
\end{equation*}
$$

where $c_{n}(t)$ are expansion coefficients and ψ_{n} are basis functions.
The spectral approximation in space 3.21 results into a $N \times N$ system of ODEs for the expansion coefficients $\left\{c_{n}(t)\right\}$:

$$
\begin{equation*}
\boldsymbol{c}^{\prime}=B \boldsymbol{c} \tag{3.22}
\end{equation*}
$$

where $B \in \mathbb{R}^{N \times N}$, and $\boldsymbol{c}=\left\{c_{n}(t)\right\} \in \mathbb{R}^{N}$. We can solve it with standard ODE solvers (Euler, CrankNicholson, etc.) which as we have seen are approximations to the matrix exponential in the exact solution $\boldsymbol{c}(t)=\mathrm{e}^{t B} \boldsymbol{c}(0)$.

Example 3.23 (The diffusion equation) Consider the diffusion equation for a function $u=u(x, t)$,

$$
\begin{cases}u_{t}=u_{x x}, & (x, t) \in[-1,1] \times \mathbb{R}_{+} \tag{3.23}\\ u(x, 0)=g(x), & x \in[-1,1]\end{cases}
$$

with the periodic boundary conditions $u(-1, t)=u(1, t), u_{x}(-1, t)=u_{x}(1, t)$, imposed for all values $t \geq 0$.
For each t, we approximate $u(x, t)$ by its N-th order partial Fourier sum in x,

$$
u(x, t) \approx u_{N}(x, t)=\sum_{|n| \leq N / 2} \widehat{u}_{n}(t) e^{i \pi n x}
$$

Then, from 3.23, we see that each coefficient \widehat{u}_{n} fulfills the ODE

$$
\begin{equation*}
\widehat{u}_{n}^{\prime}(t)=-\pi^{2} n^{2} \widehat{u}_{n}(t), \quad|n| \leq N / 2 \tag{3.24}
\end{equation*}
$$

Its exact solution is $\widehat{u}_{n}(t)=\mathrm{e}^{-\pi^{2} n^{2} t} \widehat{g}_{n}$, so that

$$
u_{N}(x, t)=\sum_{|n| \leq N / 2} \widehat{g}_{n} \mathrm{e}^{-\pi^{2} n^{2} t} \mathrm{e}^{i \pi n x}
$$

which is the exact solution truncated to $N+1$ terms.
Here, we were able to find the exact solution without solving the ODE numerically due to the special structure of the Laplacian. However, for more general PDEs we will need a numerical method for which stability has to be analyzed.

Stability analysis The system 3.24 has the form

$$
\widehat{\boldsymbol{u}}^{\prime}=B \widehat{\boldsymbol{u}}, \quad B=\operatorname{diag}\left(-\pi^{2} n^{2}: n=-N / 2, \ldots, N / 2\right)
$$

If we approximate this system with the Euler method:

$$
\widehat{\boldsymbol{u}}^{\ell+1}=(I+k B) \widehat{\boldsymbol{u}}^{\ell}, \quad k:=\Delta t,
$$

then the stability condition becomes $\|I+k B\| \leq 1$. Since B is diagonal, the same is true for $I+k B$, and the diagonal elements are $1-k \pi^{2} n^{2}$ with $-N / 2 \leq n \leq N / 2$. To have stability, we thus need $1-k \pi^{2}(N / 2)^{2} \geq-1$, i.e., $k \leq 8 /\left(\pi^{2} N^{2}\right)$.

For the trapezoidal rule, the stability condition will be instead $\left\|(I-(k / 2) B)^{-1}(I+(k / 2) B)\right\| \leq 1$ which is satisfied for all $k>0$, since the spectrum of B is negative.

Example 3.24 (The diffusion equation with non-constant coefficient) We want to solve the diffusion equation with a non-constant coefficient $a(x)>0$ for a function $u=u(x, t)$

$$
\begin{cases}u_{t}=\left(a(x) u_{x}\right)_{x}, & (x, t) \in[-1,1] \times \mathbb{R}_{+} \tag{3.25}\\ u(x, 0)=g(x), & x \in[-1,1]\end{cases}
$$

Approximating u by its partial Fourier sum results in the following system of ODEs for the coefficients \widehat{u}_{n}

$$
\widehat{u}_{n}^{\prime}(t)=-\pi^{2} \sum_{|m| \leq N / 2} m n \widehat{a}_{n-m} \widehat{u}_{m}(t), \quad|n| \leq N / 2
$$

For the discretization in time we may apply the Euler method, this gives

$$
\widehat{u}_{n}^{\ell+1}=\widehat{u}_{n}^{\ell}-k \pi^{2} \sum_{|m| \leq N / 2} m n \widehat{a}_{n-m} \widehat{u}_{m}^{\ell}, \quad k=\Delta t
$$

or in the vector form

$$
\widehat{\boldsymbol{u}}^{\ell+1}=(I+k B) \widehat{\boldsymbol{u}}^{\ell},
$$

where $B=\left(b_{m, n}\right)=\left(-\pi^{2} m n \widehat{a}_{n-m}\right)$. For stability of Euler method, we again need $\|I+k B\| \leq 1$.

