Mathematical Tripos Part II: Michaelmas Term 2023
 Numerical Analysis - Lecture 15

4 Iterative methods for linear systems

A general iterative method for solving $A \boldsymbol{x}=\boldsymbol{b}$ is a rule $\boldsymbol{x}^{k+1}=f_{k}\left(\boldsymbol{x}^{0}, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{k}\right)$. We will consider the simplest ones: linear, one-step, stationary iterative schemes:

$$
\begin{equation*}
\boldsymbol{x}^{k+1}=H \boldsymbol{x}^{k}+\boldsymbol{v}, \quad \boldsymbol{x}^{0}, \boldsymbol{v} \in \mathbb{R}^{n} \tag{4.1}
\end{equation*}
$$

Here one chooses H and \boldsymbol{v} so that \boldsymbol{x}^{*}, a solution of $A \boldsymbol{x}=\boldsymbol{b}$, satisfies $\boldsymbol{x}^{*}=H \boldsymbol{x}^{*}+\boldsymbol{v}$, i.e. it is the fixed point of the iteration (4.1) (if the scheme converges). Standard terminology:

$$
\text { the iteration matrix } H, \quad \text { the error } \boldsymbol{e}^{k}:=\boldsymbol{x}^{*}-\boldsymbol{x}^{k}, \quad \text { the residual } \boldsymbol{r}^{k}:=A \boldsymbol{e}^{k}=\boldsymbol{b}-A \boldsymbol{x}^{k} \text {. }
$$

For a given class of matrices A (e.g. positive definite matrices, or even a single particular matrix), we are interested in convergent methods, i.e. the methods such that $\boldsymbol{x}^{k} \rightarrow \boldsymbol{x}^{*}=A^{-1} \boldsymbol{b}$ for every starting value \boldsymbol{x}^{0}. Subtracting $\boldsymbol{x}^{*}=H \boldsymbol{x}^{*}+\boldsymbol{v}$ from (4.1) we obtain

$$
\begin{equation*}
e^{k+1}=H e^{k}=\cdots=H^{k+1} e^{0} \tag{4.2}
\end{equation*}
$$

i.e., a method is convergent if $\boldsymbol{e}^{k}=H^{k} \boldsymbol{e}^{0} \rightarrow 0$ for any $\boldsymbol{e}^{0} \in \mathbb{R}^{n}$.

Scheme 4.1 (Iterative refinement) This is the scheme

$$
\boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}-S\left(A \boldsymbol{x}^{k}-\boldsymbol{b}\right)
$$

If $S=A^{-1}$, then $\boldsymbol{x}^{k+1}=A^{-1} \boldsymbol{b}=\boldsymbol{x}^{*}$, so it is suggestive to choose S as an approximation to A^{-1}. The iteration matrix for this scheme is $H_{S}=I-S A$.

Scheme 4.2 (Splitting) We assume $A=B+C$ in such a way that solving a linear system with the matrix C is "easy". We consider the scheme which can be written as $B \boldsymbol{x}^{k}+C \boldsymbol{x}^{k+1}=b$, i.e., eliminating C

$$
(A-B) \boldsymbol{x}^{k+1}=-B \boldsymbol{x}^{k}+\boldsymbol{b}
$$

with the iteration matrix $H=-(A-B)^{-1} B$. Any splitting can be viewed as an iterative refinement (and vice versa) because

$$
\begin{aligned}
(A-B) \boldsymbol{x}^{k+1}=-B \boldsymbol{x}^{k}+\boldsymbol{b} & \Leftrightarrow(A-B) \boldsymbol{x}^{k+1}=(A-B) \boldsymbol{x}^{k}-\left(A \boldsymbol{x}^{k}-\boldsymbol{b}\right) \\
& \Leftrightarrow \boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}-(A-B)^{-1}\left(A \boldsymbol{x}^{k}-\boldsymbol{b}\right)
\end{aligned}
$$

so we should seek a splitting such that $S=(A-B)^{-1}$ approximates A^{-1}.
Theorem 4.3 Let $H \in \mathbb{R}^{n \times n}$. Then $\lim _{k \rightarrow \infty} H^{k} \boldsymbol{z}=0$ for any $\boldsymbol{z} \in \mathbb{R}^{n}$ if and only if $\rho(H)<1$.
Proof. 1) Let λ be an eigenvalue of (the real) H, real or complex, such that $|\lambda|=\rho(H) \geq 1$, and let \boldsymbol{w} be a corresponding eigenvector, i.e., $H \boldsymbol{w}=\lambda \boldsymbol{w}$. Then $H^{k} \boldsymbol{w}=\lambda^{k} \boldsymbol{w}$, and

$$
\begin{equation*}
\left\|H^{k} \boldsymbol{w}\right\|_{\infty}=|\lambda|^{k}\|\boldsymbol{w}\|_{\infty} \geq\|\boldsymbol{w}\|_{\infty}=: \gamma>0 \tag{4.3}
\end{equation*}
$$

If \boldsymbol{w} is real, we choose $\boldsymbol{z}=w$, hence $\left\|H^{k} \boldsymbol{z}\right\|_{\infty} \geq \gamma$, and this cannot tend to zero.
If \boldsymbol{w} is complex, then $\boldsymbol{w}=\boldsymbol{u}+\mathrm{i} \boldsymbol{v}$ with some real vectors $\boldsymbol{u}, \boldsymbol{v}$. But then at least one of the sequences $\left(H^{k} \boldsymbol{u}\right),\left(H^{k} \boldsymbol{v}\right)$ does not tend to zero. For if both do, then also $H^{k} \boldsymbol{w}=H^{k} \boldsymbol{u}+\mathrm{i} H^{k} \boldsymbol{v} \rightarrow 0$, and this contradicts (4.3).
2) Now, let $\rho(H)<1$, and assume for simplicity that H possesses n linearly independent eigenvectors $\left(\boldsymbol{w}_{j}\right)$ such that $H \boldsymbol{w}_{j}=\lambda_{j} \boldsymbol{w}_{j}$. Linear independence means that every $\boldsymbol{z} \in \mathbb{R}^{n}$ can be expressed as a linear combination of the eigenvectors, i.e., there exist $\left(c_{j}\right) \in \mathbb{C}$ such that $\boldsymbol{z}=\sum_{j=1}^{n} c_{j} \boldsymbol{w}_{j}$. Thus,

$$
H^{k} \boldsymbol{z}=\sum_{j=1}^{n} c_{j} \lambda_{j}^{k} \boldsymbol{w}_{j}
$$

and since $\left|\lambda_{j}\right| \leq \rho(H)<1$ we have $\lim _{k \rightarrow \infty} H^{k} \boldsymbol{z}=0$, as required.
Remark 4.4 The complete proof of case (2) of Theorem 4.3 exploits the so-called Jordan normal form of the matrix H, namely $H=S J S^{-1}$, where J is a block diagonal matrix consisting of the Jordan blocks,

$$
\left.J=\begin{array}{|lllll}
\hline J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{r} \\
\hline
\end{array}\right], \quad J_{i}=\left[\begin{array}{llll}
\lambda_{i} & 1 & & \\
& \lambda_{i} & \ddots & \\
& \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right], \quad J_{i} \in \mathbb{R}^{n_{i} \times n_{i}}, \quad \sum_{i} n_{i}=n
$$

To prove that $J_{i}^{k} \rightarrow 0$ if $\left|\lambda_{i}\right|<1$ one should split $J_{i}=\lambda_{i} I+P$, notice that $P^{m}=0$ for $m \geq n_{i}$, and evaluate the terms of expansion $\left(\lambda_{i} I+P\right)^{k}=\sum_{m=0}^{n_{i}-1}\binom{k}{m} \lambda_{i}^{k-m} P^{m}$.

Applying Theorem 4.3 to the error estimate (4.2), we arrive at the following statement.
Theorem 4.5 Let \boldsymbol{x}^{*}, a solution of $A \boldsymbol{x}=\boldsymbol{b}$, satisfy $\boldsymbol{x}^{*}=H \boldsymbol{x}^{*}+\boldsymbol{v}$ and we are given the scheme

$$
\begin{equation*}
\boldsymbol{x}^{k+1}=H \boldsymbol{x}^{k}+\boldsymbol{v}, \quad \boldsymbol{x}^{0}, \boldsymbol{v} \in \mathbb{R}^{n} \tag{4.4}
\end{equation*}
$$

Then $\boldsymbol{x}^{k} \rightarrow \boldsymbol{x}^{*}$ for any choice of \boldsymbol{x}^{0} if and only if $\rho(H)<1$.
Note: Of course, we would like to know not just convergence but the rate of it. For example, we achieve convergence with

$$
H=\left[\begin{array}{cc}
0.99 & 10^{6} \\
0 & 0.99
\end{array}\right]
$$

but it will take quite a long time. We will discuss this topic briefly later on.
Method 4.6 (Jacobi and Gauss-Seidel) Both of these methods are versions of splitting which can be applied to any A with nonzero diagonal elements. We write A as the sum of three matrices $L_{0}+D+U_{0}$: subdiagonal (strictly lower-triangular), diagonal and superdiagonal (strictly upper-triangular) portions of A, respectively.

1) Jacobi method. We set $A-B=D$, the diagonal part of A, and we obtain the next iteration by solving the diagonal system

$$
D \boldsymbol{x}^{k+1}=-\left(L_{0}+U_{0}\right) \boldsymbol{x}^{k}+\boldsymbol{b}, \quad H_{\mathrm{J}}=-D^{-1}\left(L_{0}+U_{0}\right)
$$

2) Gauss-Seidel method. We take $A-B=L_{0}+D=L$, the lower-triangular part of A, and we generate the sequence $\left(\boldsymbol{x}^{(k)}\right)$ by solving the triangular system

$$
\left(L_{0}+D\right) \boldsymbol{x}^{k+1}=-U_{0} \boldsymbol{x}^{k}+\boldsymbol{b}, \quad H_{\mathrm{GS}}=-\left(L_{0}+D\right)^{-1} U_{0}
$$

There is no need to invert $\left(L_{0}+D\right)$, we calculate the components of $\boldsymbol{x}^{(k+1)}$ in sequence by forward substitution:

$$
a_{i i} x_{i}^{k+1}=-\sum_{j<i} a_{i j} x_{j}^{k+1}-\sum_{j>i} a_{i j} x_{j}^{k}+b_{i}, \quad i=1 . . n .
$$

As we mentioned above, the sequence \boldsymbol{x}^{k} converges to solution of $A \boldsymbol{x}=\boldsymbol{b}$ if the spectral radius of the iteration matrix, $H_{\mathrm{J}}=-D^{-1}\left(L_{0}+U_{0}\right)$ or $H_{\mathrm{GS}}=-\left(L_{0}+D\right)^{-1} U_{0}$, respectively, is less than one. Our next goal is to prove that this is the case for two important classes of matrices A :
a) diagonally dominant and
b) positive definite matrices.

We start with recalling the simple, but very useful Gershgorin theorem.

Revision 4.7 (Gershgorin theorem) All eigenvalues of an $n \times n$ matrix A are contained in the union of the Gershgorin discs in the complex plane:

$$
\sigma(A) \subset \cup_{i=1}^{n} \Gamma_{i}, \quad \Gamma_{i}:=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq r_{i}\right\}, \quad r_{i}:=\sum_{j \neq i}\left|a_{i j}\right|
$$

Definition 4.8 (Strictly diagonally dominant matrices) A matrix A is called strictly diagonally dominant by rows (resp. by columns) if

$$
\left.\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|, \quad i=1 . . n \quad \text { (resp. } \quad\left|a_{j j}\right|>\sum_{i \neq j}\left|a_{i j}\right|, \quad j=1 . . n\right)
$$

From Gershgorin theorem, it follows that strictly diagonally dominant matrices are nonsingular.
Theorem 4.9 If A is strictly diagonally dominant (either by rows or columns), then both the Jacobi and the GaussSeidel methods converge.

Proof. Jacobi method: We have $H_{\mathrm{J}}=-D^{-1}(A-D)=I-D^{-1} A$. The diagonal elements of H_{J} are all zero, and the sum of the off-diagonal entries on the i^{\prime} th row is $\sum_{j \neq i}\left|\left(H_{\mathrm{J}}\right)_{i j}\right|=\sum_{j \neq i}\left|A_{i j}\right| /\left|A_{i i}\right|<1$ if A is strictly diagonally dominant by rows. Applying Gersgorin's theorem to H_{J}, we get that all the eigenvalues of H_{J} have modulus <1, which is what we wanted. If A is strictly diagonally dominant by columns (instead of by rows), we get that $\rho\left(I-A D^{-1}\right)<1$ using the same argument, and use the fact that $I-D^{-1} A$ and $I-A D^{-1}$ have the same eigenvalues (since $I-D^{-1} A=D^{-1}\left(I-A D^{-1}\right) D$).

Gauss-Seidel: If λ is an eigenvalue of $H_{\mathrm{GS}}=-\left(L_{0}+D\right)^{-1} U_{0}$, then this means that $H_{\mathrm{GS}}-\lambda I=-\left(L_{0}+\right.$ $D)^{-1} U_{0}-\lambda I$ is singular, which in turn implies that $U_{0}+\lambda\left(L_{0}+D\right)$ is singular. It is easy to see that if $A=L_{0}+D+U_{0}$ is strictly diagonally dominant, then the same is true for $A_{\lambda}=U_{0}+\lambda\left(L_{0}+D\right)$ for all $|\lambda| \geq 1$, and in particular A_{λ} is nonsingular in this case. This implies that any eigenvalue λ of $-\left(L_{0}+D\right)^{-1} U_{0}$ must satisfy $|\lambda|<1$. This shows convergence of the Gauss-Seidel method. (Note: a similar argument can also be used for Jacobi.)

