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Numerical Analysis — Lecture 15

4 Iterative methods for linear systems

A general iterative method for solving Az = b is a rule zF™! = f;. (2 !,..., x*). We will consider the
simplest ones: linear, one-step, stationary iterative schemes:

"t = Ha? + v, x% v eR"™ (4.1)

Here one chooses H and v so that «*, a solution of Az = b, satisfies * = Hx* + v, i.e. it is the fixed point
of the iteration (4.1) (if the scheme converges). Standard terminology:

the iteration matrix H, the error e* := x* — ¥, the residual r* .= Ae* = b — AzxF.

For a given class of matrices A (e.g. positive definite matrices, or even a single particular matrix), we are
interested in convergent methods, i.e. the methods such that ¥ — x* = A~1b for every starting value .
Subtracting «* = Hx* + v from (4.1) we obtain

s Y s ) 4.2)
i.e., a method is convergent if e* = H*e" — 0 for any e® € R".
Scheme 4.1 (Iterative refinement) This is the scheme

Mt = zF — S(Ax* —b).

If S = A71, then 2"t = A~1b = z*, so it is suggestive to choose S as an approximation to A~!. The
iteration matrix for this scheme is Hg = I — SA.

Scheme 4.2 (Splitting) We assume A = B + C in such a way that solving a linear system with the matrix
C is “easy”. We consider the scheme which can be written as Bz* + Cz**! = b, i.e., eliminating C

(A—B)x**' = —BzF + b,

with the iteration matrix H = —(4 — B)~!B. Any splitting can be viewed as an iterative refinement (and
vice versa) because

(A-B)z**t' = -BzF+b & (A-B)z* =(A- B)z* - (Az* - b)
& zhtl=gzrk - (A-B)"1(AzF - b),
so we should seek a splitting such that S = (A — B)~! approximates A~!.
Theorem 4.3 Let H € R"*". Then klim H%z = 0 for any z € R" if and only if p(H) < 1.
:— 00

Proof. 1) Let X be an eigenvalue of (the real) H, real or complex, such that |\| = p(H) > 1, and let w be a
corresponding eigenvector, i.e., Hw = Aw. Then H*w = M w, and

[H wlloe = Al|wlloc > wlec =27 > 0. (4.3)

If w is real, we choose z = w, hence ||H*z||», > 7, and this cannot tend to zero.

If w is complex, then w = w + iv with some real vectors u,v. But then at least one of the sequences
(H*u), (H*v) does not tend to zero. For if both do, then also H*w = H*u+iH*v — 0, and this contradicts
4.3).
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2) Now, let p(H) < 1, and assume for simplicity that H possesses n linearly independent eigenvectors

(w;) such that Hw; = A\jw;. Linear independence means that every z € R™ can be expressed as a linear

combination of the eigenvectors, i.e., there exist (c;) € C such that z = }°7_, ¢;w;. Thus,

sz = Z;‘lzl cj)\f'wj s
and since |\;| < p(H) < 1 we have lim_, H*z = 0, as required. a

Remark 4.4 The complete proof of case (2) of Theorem 4.3 exploits the so-called Jordan normal form of the
matrix H, namely H = SJS~!, where J is a block diagonal matrix consisting of the Jordan blocks,

J1
7 il
2] A |
J = . s Ji: ’ll s JiGRnlxnl, Zini:n.
. Ai

To prove that J,i’~C — 01if |A;] < 1 one should split J; = \;I + P, notice that P™ = 0 for m > n,;, and evaluate
the terms of expansion (\;] 4+ P)¥ = S0 (K)\k=mpm.,

m=0 \m

Applying Theorem 4.3 to the error estimate (4.2), we arrive at the following statement.
Theorem 4.5 Let *, a solution of Ax = b, satisfy x* = Ha* + v and we are given the scheme
bt = Ha* + v, %, v e R™. (4.4)

Then x* — x* for any choice of ° if and only if p(H) < 1.

Note: Of course, we would like to know not just convergence but the rate of it. For example, we achieve
convergence with
6
7 [ 0.99 10 } 7

0 099

but it will take quite a long time. We will discuss this topic briefly later on.

Method 4.6 (Jacobi and Gauss-Seidel) Both of these methods are versions of splitting which can be ap-
plied to any A with nonzero diagonal elements. We write A as the sum of three matrices Ly + D + Uy:
subdiagonal (strictly lower-triangular), diagonal and superdiagonal (strictly upper-triangular) portions of
A, respectively.
1) Jacobi method. We set A — B = D, the diagonal part of A, and we obtain the next iteration by solving
the diagonal system
DxFtl = — (Lo + Up)x* + b, Hy=—-D"Y(Lo+Up).

2) Gauss—Seidel method. We take A — B = Ly + D = L, the lower-triangular part of A, and we generate
the sequence (z*)) by solving the triangular system

(Lo + D) "™ = —Upz" + b, Hgs = —(Lo+ D)~ 'Up.

There is no need to invert (L + D), we calculate the components of z(**1) in sequence by forward substi-
tution:

okl ekl ok . -
agx; = — Zj@ aij T ij- aijri + by, i=1.n.

As we mentioned above, the sequence z* converges to solution of Az = b if the spectral radius of the

iteration matrix, Hy = —D~ (Lo + Up) or Hgs = —(Lo + D)~ 'Uy, respectively, is less than one. Our next
goal is to prove that this is the case for two important classes of matrices A:

a) diagonally dominant and b) positive definite matrices.

We start with recalling the simple, but very useful Gershgorin theorem.
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Revision 4.7 (Gershgorin theorem) All eigenvalues of an nxn matrix A are contained in the union of the Gersh-
gorin discs in the complex plane:

U(A)CU?:1Fi7 I, = {ZGCZ‘Z—CLZ”ST’Z'}, ri = Zj;ﬁi |aij\.

Definition 4.8 (Strictly diagonally dominant matrices) A matrix A is called strictly diagonally dominant
by rows (resp. by columns) if

|aii| > 32, lagl, i=1.n  (resp. laj;| >3, lagl, j=1.n).
From Gershgorin theorem, it follows that strictly diagonally dominant matrices are nonsingular.

Theorem 4.9 If A is strictly diagonally dominant (either by rows or columns), then both the Jacobi and the Gauss-
Seidel methods converge.

Proof. Jacobi method: We have Hy = —D~'(A — D) = I — D~' A. The diagonal elements of Hj are all zero,
and the sum of the off-diagonal entries on the i"throw is 3., [(Hy)ij| = >, [Aisl/[Ai| < 1if Ais strictly
diagonally dominant by rows. Applying Gersgorin’s theorem to H ;, we get that all the eigenvalues of Hj
have modulus < 1, which is what we wanted. If A is strictly diagonally dominant by columns (instead
of by rows), we get that p(I — AD™!) < 1 using the same argument, and use the fact that / — D=4 and
I — AD~! have the same eigenvalues (since ] — D~'A = D~'(I — AD~')D).

Gauss-Seidel: If ) is an eigenvalue of Hgs = — (Lo + D)~ 'Up, then this means that Hgs — A = — (Lo +
D)~'Uy — Al is singular, which in turn implies that Uy + A(Lo + D) is singular. It is easy to see that if
A = Lo + D + Uy is strictly diagonally dominant, then the same is true for Ay = Uy + A(Lo + D) for all
|A| > 1, and in particular A, is nonsingular in this case. This implies that any eigenvalue X of —(Ly+D) U
must satisfy |A| < 1. This shows convergence of the Gauss-Seidel method. (Note: a similar argument can
also be used for Jacobi.) |
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