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Numerical Analysis – Lecture 16
Theorem 4.10 (The Householder–John theorem) If A and B are real matrices such that both A and
A−B−BT are symmetric positive definite, then the spectral radius of H = −(A−B)−1B is strictly less
than one.

Proof. Let λ be an eigenvalue of H , so Hw = λw holds, where w 6= 0 is an eigenvector. (Note
that both λ and w may have nonzero imaginary parts whenH is not symmetric, e.g. in the Gauss–
Seidel method.) By definition of H we have −Bw = λ(A − B)w, and we note that λ 6= 1 since
otherwise A would be singular (which it is not). Thus, we deduce

wTBw =
λ

λ− 1
wTAw, (4.3)

where the bar means complex conjugation. Moreover, writing w = u+ iv, where u and v are real,
we find (for C = CT ) the identity wTCw = uTCu+ vTCv, so symmetric positive definiteness in
the assumption implies wTAw > 0 and wT (A − B − BT )w > 0. In the latter inequality, we use
relation (4.3) and its conjugate transpose to obtain

0 < wTAw −wTBw −wTBTw =

(
1− λ

λ− 1
− λ

λ− 1

)
wTAw =

1− |λ|2

|λ− 1|2
wTAw.

Now λ 6= 1 implies |λ− 1|2 > 0. Hence, recalling that wTAw > 0, we see that 1− |λ|2 is positive.
Therefore every eigenvalue of H satisfies |λ| < 1 as required. �

Corollary 4.11 1) If A is symmetric positive definite, then the Gauss-Seidel method converges.
2) If both A and 2D−A are symmetric positive definite, then the Jacobi method converges.

Proof. 1) For the Gauss-Seidel method,B is the superdiagonal part of symmetricA, henceA−B−
BT is equal to D, the diagonal part of A, and if A is positive definite, then D is positive definite
too (this is the first part of the Exercise 23 from Example Sheets).

2) For the Jacobi method, we haveB = A−D, and ifA is symmetric, thenA−B−BT = 2D−A.
(The latter matrix is the same asA except that the signs of the off-diagonal elements are reversed.)
�

Example 4.12 (Poisson’s equation on a square) As we have seen in the previous sections linear
systems Ax = b, where A is a real symmetric positive (negative) definite matrix, frequently occur
in numerical methods for solving elliptic partial differential equations. A typical example we
already encountered is Poisson’s equation on a square where the five-point formula approximation
yields an n× n system of linear equations with n = m2 unknowns up,q :

up−1,q + up+1,q + up,q−1 + up,q+1 − 4up,q = h2f(ph, qh) (4.4)

(Note that when p or q is equal to 1 or m, then the values u0,q , up,0 or up,m+1, um+1,q are known
boundary values and they should be moved to the right-hand side, thus leaving fewer unknowns
on the left.)

For any ordering of the grid points (ph, qh) we have shown in Lemma 1.11 that the matrix A
of this linear system is symmetric and negative definite.

Corollary 4.13 For linear system (4.4), both Jacobi and Gauss-Seidel methods converge.

Proof. By Lemma 1.9 (Lecture 2), A is symmetric and negative definite, hence convergence of
Gauss-Seidel. To prove convergence of the Jacobi method, we need negative definiteness of the
matrix 2D − A, and that follows by the same arguments as in Lemma 1.9: recall that the proof
operates with the modulus of the off-diagonal elements and does not depend on their sign. �
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Relaxation It is often possible to improve the efficiency of the recursive schemes above by relax-
ation. Specifically, instead of letting x(k+1) = Hx(k) + v, we let

x̂(k+1) = Hx(k) + v, and then x(k+1) = ωx̂(k+1) + (1− ω)x(k)

= Hωx
(k) + ωv

with
Hω = ωH + (1− ω)I,

where ω is a real constant called the relaxation parameter. (Note that ω = 1 corresponds to the
standard “unrelaxed” iteration.) Good choice of ω leads to a smaller spectral radius of the iteration
matrix (compared with the ”unrelaxed” method), and the smaller the spectral radius, the faster
the iteration converges.

The eigenvalues of Hω and H are related by the rule λω = ωλ+ (1− ω), therefore one may try
to choose ω ∈ R to minimize

ρ(Hω) = max {|ωλ+ (1− ω)| : λ ∈ σ(H)}

where σ(H) is the spectrum of H . In general, σ(H) is unknown, but often we have some informa-
tion about it which can be utilized to find a ”good” (rather than ”best”) value of ω. For example,
suppose that it is known that σ(H) is real and resides in the interval [α, β] where−1 < α < β < 1.
In that case we seek ω to minimize

max {|ωλ+ (1− ω)| : λ ∈ [α, β]} .

It is readily seen that, for a fixed λ < 1, the function f(ω) = ωλ+(1−ω) is decreasing, therefore, as
ω increases (decreases) from 1 the spectrum of Hω moves to the left (to the right) of the spectrum
of H . It is clear that the optimal location of the spectrum σ(Hω) (or of the interval [αω, βω] that
contains σ(Hω)) is the one which is centralized around the origin:

−[ωα+ (1− ω)] = ωβ + (1− ω) ⇒ ωopt =
2

2−(α+β)
, −αωopt

= βωopt
=

β−α
2−(α+β)

.
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