Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis – Lecture 16

Theorem 4.10 (The Householder–John theorem) If A and B are real matrices such that both A and $A-B-B^T$ are symmetric positive definite, then the spectral radius of $H = -(A-B)^{-1}B$ is strictly less than one.

Proof. Let λ be an eigenvalue of H, so $Hw = \lambda w$ holds, where $w \neq 0$ is an eigenvector. (Note that both λ and w may have nonzero imaginary parts when H is not symmetric, e.g. in the Gauss–Seidel method.) By definition of H we have $-Bw = \lambda(A - B)w$, and we note that $\lambda \neq 1$ since otherwise A would be singular (which it is not). Thus, we deduce

$$\overline{\boldsymbol{w}}^T B \boldsymbol{w} = \frac{\lambda}{\lambda - 1} \overline{\boldsymbol{w}}^T A \boldsymbol{w}, \tag{4.3}$$

where the bar means complex conjugation. Moreover, writing w = u + iv, where u and v are real, we find (for $C = C^T$) the identity $\overline{w}^T C w = u^T C u + v^T C v$, so symmetric positive definiteness in the assumption implies $\overline{w}^T A w > 0$ and $\overline{w}^T (A - B - B^T) w > 0$. In the latter inequality, we use relation (4.3) and its conjugate transpose to obtain

$$0 < \overline{\boldsymbol{w}}^T A \boldsymbol{w} - \overline{\boldsymbol{w}}^T B \boldsymbol{w} - \overline{\boldsymbol{w}}^T B^T \boldsymbol{w} = \left(1 - \frac{\lambda}{\lambda - 1} - \frac{\overline{\lambda}}{\overline{\lambda} - 1}\right) \overline{\boldsymbol{w}}^T A \boldsymbol{w} = \frac{1 - |\lambda|^2}{|\lambda - 1|^2} \overline{\boldsymbol{w}}^T A \boldsymbol{w}.$$

Now $\lambda \neq 1$ implies $|\lambda - 1|^2 > 0$. Hence, recalling that $\overline{w}^T A w > 0$, we see that $1 - |\lambda|^2$ is positive. Therefore every eigenvalue of H satisfies $|\lambda| < 1$ as required.

Corollary 4.11 1) If A is symmetric positive definite, then the Gauss-Seidel method converges. 2) If both A and 2D-A are symmetric positive definite, then the Jacobi method converges.

Proof. 1) For the Gauss-Seidel method, *B* is the superdiagonal part of symmetric *A*, hence $A - B - B^T$ is equal to *D*, the diagonal part of *A*, and if *A* is positive definite, then *D* is positive definite too (this is the first part of the Exercise 23 from Example Sheets).

2) For the Jacobi method, we have B = A - D, and if A is symmetric, then $A - B - B^T = 2D - A$. (The latter matrix is the same as A except that the signs of the off-diagonal elements are reversed.)

Example 4.12 (Poisson's equation on a square) As we have seen in the previous sections linear systems Ax = b, where A is a real symmetric positive (negative) definite matrix, frequently occur in numerical methods for solving elliptic partial differential equations. A typical example we already encountered is Poisson's equation on a square where the *five-point formula* approximation yields an $n \times n$ system of linear equations with $n = m^2$ unknowns $u_{p,q}$:

$$u_{p-1,q} + u_{p+1,q} + u_{p,q-1} + u_{p,q+1} - 4u_{p,q} = h^2 f(ph, qh)$$
(4.4)

(Note that when p or q is equal to 1 or m, then the values $u_{0,q}$, $u_{p,0}$ or $u_{p,m+1}$, $u_{m+1,q}$ are known boundary values and they should be moved to the right-hand side, thus leaving fewer unknowns on the left.)

For any ordering of the grid points (ph, qh) we have shown in Lemma 1.11 that the matrix A of this linear system is symmetric and negative definite.

Corollary 4.13 For linear system (4.4), both Jacobi and Gauss-Seidel methods converge.

Proof. By Lemma 1.9 (Lecture 2), *A* is symmetric and negative definite, hence convergence of Gauss-Seidel. To prove convergence of the Jacobi method, we need negative definiteness of the matrix 2D - A, and that follows by the same arguments as in Lemma 1.9: recall that the proof operates with the modulus of the off-diagonal elements and does not depend on their sign.

Relaxation It is often possible to improve the efficiency of the recursive schemes above by *relaxation*. Specifically, instead of letting $x^{(k+1)} = Hx^{(k)} + v$, we let

$$\widehat{x}^{(k+1)} = H x^{(k)} + v$$
, and then $x^{(k+1)} = \omega \widehat{x}^{(k+1)} + (1-\omega) x^{(k)}$
= $H_{\omega} x^{(k)} + \omega v$

with

$$H_{\omega} = \omega H + (1 - \omega)I,$$

where ω is a real constant called the *relaxation parameter*. (Note that $\omega = 1$ corresponds to the standard "unrelaxed" iteration.) Good choice of ω leads to a smaller spectral radius of the iteration matrix (compared with the "unrelaxed" method), and the smaller the spectral radius, the faster the iteration converges.

The eigenvalues of H_{ω} and H are related by the rule $\lambda_{\omega} = \omega \lambda + (1 - \omega)$, therefore one may try to choose $\omega \in \mathbb{R}$ to minimize

$$\rho(H_{\omega}) = \max\left\{ |\omega\lambda + (1-\omega)| : \lambda \in \sigma(H) \right\}$$

where $\sigma(H)$ is the spectrum of H. In general, $\sigma(H)$ is unknown, but often we have some information about it which can be utilized to find a "good" (rather than "best") value of ω . For example, suppose that it is known that $\sigma(H)$ is real and resides in the interval $[\alpha, \beta]$ where $-1 < \alpha < \beta < 1$. In that case we seek ω to minimize

$$\max\left\{\left|\omega\lambda + (1-\omega)\right| : \lambda \in [\alpha,\beta]\right\}.$$

It is readily seen that, for a fixed $\lambda < 1$, the function $f(\omega) = \omega \lambda + (1-\omega)$ is decreasing, therefore, as ω increases (decreases) from 1 the spectrum of H_{ω} moves to the left (to the right) of the spectrum of H. It is clear that the optimal location of the spectrum $\sigma(H_{\omega})$ (or of the interval $[\alpha_{\omega}, \beta_{\omega}]$ that contains $\sigma(H_{\omega})$) is the one which is centralized around the origin:

$$-[\omega\alpha + (1-\omega)] = \omega\beta + (1-\omega) \quad \Rightarrow \quad \omega_{\rm opt} = \frac{2}{2-(\alpha+\beta)}, \quad -\alpha_{\omega_{\rm opt}} = \beta_{\omega_{\rm opt}} = \frac{\beta-\alpha}{2-(\alpha+\beta)}$$