# Mathematical Tripos Part II: Michaelmas Term 2023 Numerical Analysis - Lecture 16 

Theorem 4.10 (The Householder-John theorem) If $A$ and $B$ are real matrices such that both $A$ and $A-B-B^{T}$ are symmetric positive definite, then the spectral radius of $H=-(A-B)^{-1} B$ is strictly less than one.

Proof. Let $\lambda$ be an eigenvalue of $H$, so $H \boldsymbol{w}=\lambda \boldsymbol{w}$ holds, where $\boldsymbol{w} \neq \mathbf{0}$ is an eigenvector. (Note that both $\lambda$ and $\boldsymbol{w}$ may have nonzero imaginary parts when $H$ is not symmetric, e.g. in the GaussSeidel method.) By definition of $H$ we have $-B \boldsymbol{w}=\lambda(A-B) \boldsymbol{w}$, and we note that $\lambda \neq 1$ since otherwise $A$ would be singular (which it is not). Thus, we deduce

$$
\begin{equation*}
\overline{\boldsymbol{w}}^{T} B \boldsymbol{w}=\frac{\lambda}{\lambda-1} \overline{\boldsymbol{w}}^{T} A \boldsymbol{w} \tag{4.3}
\end{equation*}
$$

where the bar means complex conjugation. Moreover, writing $\boldsymbol{w}=\boldsymbol{u}+i \boldsymbol{v}$, where $\boldsymbol{u}$ and $\boldsymbol{v}$ are real, we find (for $C=C^{T}$ ) the identity $\overline{\boldsymbol{w}}^{T} C \boldsymbol{w}=\boldsymbol{u}^{T} C \boldsymbol{u}+\boldsymbol{v}^{T} C \boldsymbol{v}$, so symmetric positive definiteness in the assumption implies $\overline{\boldsymbol{w}}^{T} A \boldsymbol{w}>0$ and $\overline{\boldsymbol{w}}^{T}\left(A-B-B^{T}\right) \boldsymbol{w}>0$. In the latter inequality, we use relation (4.3) and its conjugate transpose to obtain

$$
0<\overline{\boldsymbol{w}}^{T} A \boldsymbol{w}-\overline{\boldsymbol{w}}^{T} B \boldsymbol{w}-\overline{\boldsymbol{w}}^{T} B^{T} \boldsymbol{w}=\left(1-\frac{\lambda}{\lambda-1}-\frac{\bar{\lambda}}{\bar{\lambda}-1}\right) \overline{\boldsymbol{w}}^{T} A \boldsymbol{w}=\frac{1-|\lambda|^{2}}{|\lambda-1|^{2}} \overline{\boldsymbol{w}}^{T} A \boldsymbol{w}
$$

Now $\lambda \neq 1$ implies $|\lambda-1|^{2}>0$. Hence, recalling that $\overline{\boldsymbol{w}}^{T} A \boldsymbol{w}>0$, we see that $1-|\lambda|^{2}$ is positive. Therefore every eigenvalue of $H$ satisfies $|\lambda|<1$ as required.

Corollary 4.11 1) If $A$ is symmetric positive definite, then the Gauss-Seidel method converges.
2) If both $A$ and $2 D-A$ are symmetric positive definite, then the Jacobi method converges.

Proof. 1) For the Gauss-Seidel method, $B$ is the superdiagonal part of symmetric $A$, hence $A-B-$ $B^{T}$ is equal to $D$, the diagonal part of $A$, and if $A$ is positive definite, then $D$ is positive definite too (this is the first part of the Exercise 23 from Example Sheets).
2) For the Jacobi method, we have $B=A-D$, and if $A$ is symmetric, then $A-B-B^{T}=2 D-A$. (The latter matrix is the same as $A$ except that the signs of the off-diagonal elements are reversed.)

Example 4.12 (Poisson's equation on a square) As we have seen in the previous sections linear systems $A \boldsymbol{x}=\boldsymbol{b}$, where $A$ is a real symmetric positive (negative) definite matrix, frequently occur in numerical methods for solving elliptic partial differential equations. A typical example we already encountered is Poisson's equation on a square where the five-point formula approximation yields an $n \times n$ system of linear equations with $n=m^{2}$ unknowns $u_{p, q}$ :

$$
\begin{equation*}
u_{p-1, q}+u_{p+1, q}+u_{p, q-1}+u_{p, q+1}-4 u_{p, q}=h^{2} f(p h, q h) \tag{4.4}
\end{equation*}
$$

(Note that when $p$ or $q$ is equal to 1 or $m$, then the values $u_{0, q}, u_{p, 0}$ or $u_{p, m+1}, u_{m+1, q}$ are known boundary values and they should be moved to the right-hand side, thus leaving fewer unknowns on the left.)

For any ordering of the grid points $(p h, q h)$ we have shown in Lemma 1.11 that the matrix $A$ of this linear system is symmetric and negative definite.

Corollary 4.13 For linear system (4.4), both Jacobi and Gauss-Seidel methods converge.
Proof. By Lemma 1.9 (Lecture 2), $A$ is symmetric and negative definite, hence convergence of Gauss-Seidel. To prove convergence of the Jacobi method, we need negative definiteness of the matrix $2 D-A$, and that follows by the same arguments as in Lemma 1.9: recall that the proof operates with the modulus of the off-diagonal elements and does not depend on their sign.

Relaxation It is often possible to improve the efficiency of the recursive schemes above by relaxation. Specifically, instead of letting $\boldsymbol{x}^{(k+1)}=H \boldsymbol{x}^{(k)}+\boldsymbol{v}$, we let

$$
\begin{aligned}
\widehat{\boldsymbol{x}}^{(k+1)}=H \boldsymbol{x}^{(k)}+\boldsymbol{v}, \quad \text { and then } \quad \boldsymbol{x}^{(k+1)} & =\omega \widehat{\boldsymbol{x}}^{(k+1)}+(1-\omega) \boldsymbol{x}^{(k)} \\
& =H_{\omega} \boldsymbol{x}^{(k)}+\omega \boldsymbol{v}
\end{aligned}
$$

with

$$
H_{\omega}=\omega H+(1-\omega) I
$$

where $\omega$ is a real constant called the relaxation parameter. (Note that $\omega=1$ corresponds to the standard "unrelaxed" iteration.) Good choice of $\omega$ leads to a smaller spectral radius of the iteration matrix (compared with the "unrelaxed" method), and the smaller the spectral radius, the faster the iteration converges.

The eigenvalues of $H_{\omega}$ and $H$ are related by the rule $\lambda_{\omega}=\omega \lambda+(1-\omega)$, therefore one may try to choose $\omega \in \mathbb{R}$ to minimize

$$
\rho\left(H_{\omega}\right)=\max \{|\omega \lambda+(1-\omega)|: \lambda \in \sigma(H)\}
$$

where $\sigma(H)$ is the spectrum of $H$. In general, $\sigma(H)$ is unknown, but often we have some information about it which can be utilized to find a "good" (rather than "best") value of $\omega$. For example, suppose that it is known that $\sigma(H)$ is real and resides in the interval $[\alpha, \beta]$ where $-1<\alpha<\beta<1$. In that case we seek $\omega$ to minimize

$$
\max \{|\omega \lambda+(1-\omega)|: \lambda \in[\alpha, \beta]\}
$$

It is readily seen that, for a fixed $\lambda<1$, the function $f(\omega)=\omega \lambda+(1-\omega)$ is decreasing, therefore, as $\omega$ increases (decreases) from 1 the spectrum of $H_{\omega}$ moves to the left (to the right) of the spectrum of $H$. It is clear that the optimal location of the spectrum $\sigma\left(H_{\omega}\right)$ (or of the interval $\left[\alpha_{\omega}, \beta_{\omega}\right]$ that contains $\sigma\left(H_{\omega}\right)$ ) is the one which is centralized around the origin:

$$
-[\omega \alpha+(1-\omega)]=\omega \beta+(1-\omega) \quad \Rightarrow \quad \omega_{\mathrm{opt}}=\frac{2}{2-(\alpha+\beta)}, \quad-\alpha_{\omega_{\mathrm{opt}}}=\beta_{\omega_{\mathrm{opt}}}=\frac{\beta-\alpha}{2-(\alpha+\beta)} .
$$

