Dr H. Fawzi

Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis — Lecture 17

Multigrid methods The speed of convergence of some iterative methods (Jacobi with relax-
ation, Gauss—Seidel, etc.) can be increased drastically when the linear system originates in the
discretization of PDEs, using multigrid methods. Here we look at the system Au = b originat-
ing from the 3-point formula for the Poisson equation on an m-grid Q;, = {th : 1 < i < m},
h =1/(m+ 1), being solved by the weighted Jacobi iteration.

Recall that the matrix A in this case is given by

The diagonal part of A is D = 2I. Thus the weighted Jacobi iterations takes the form:
w Y = H,u™) + (w/2)b

where v = 0, 1,... is the iteration count, H = [ — D"'A =1 — %A, and H, = wH + (1 —w)I =
I — £ A. The error decay is expressed in terms of the iteration matrix H,,:

e®) — Y e,

We know from the results of Lecture 2 that the eigenvectors and the eigenvalues of H,, are

. .k . k
wk = [szm—LL:1 """" L Me(w) = 1 — 2wsin? 2(m11) (k=1,...,m).
Consider the choice w = 1/2; then the eigenvalues of H,, are \j, = 1—sin? % = cos? %

With this choice, the eigenvalues are all positive and decreasing with &, see Figure below.
1 o} se.,
08 , *
0.6 — .
0.4 , .

5 10 15 20 25 30

Figure 1: Eigenvalues of H, for w = 1/2 (m = 31).
In particular p(H,) = A\; = cos? gy ~ 1 - % < 1, guaranteeing convergence, although

a very slow one when m is large! However, expanding the error with respect to the (orthogonal)
eigenvectors we obtain

e =3 alwh, e =HLe® = o] = M0,
k=1
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i.e. the components of e(*) (with respect to the basis of eigenvectors) decay at a different rate for
different frequencies k = 1, ..., m. More precisely, the high frequencies, where k is close to m, will
decay faster than the low frequencies, where k is closer to 1. Let us say that k£ € (0,m+1) = (0, %)

is high frequency (HF) with respect to the grid Q, if kh > 1/2 (i.e., mT'H < k <m). Then the decay
rate for the high frequency components of the error e is at least:

po = A1y /2l = 1 —sin®(w/4) = 1/2.

Therefore, for the coefficients at the HF components of e(*) we obtain
v vy (0 1\Y, (0 0
la)”| < |ual”lal)| = (5) 100 <« 1a{”],

i.e. the Jacobi method converges fast for high frequencies.

The main observation of the multigrid is to note that the low frequencies k € (ﬁ, %) with
respect to the grid 25, become high frequencies for the coarser grid Qo;, with step 2h; indeed for
such k we have k(2h) > 1/2.

The idea of the multigrid method then is that, although the global error may decrease slowly
by iteration, its components with high frequencies relative to €2}, are suppressed very quickly, and
that dealing with the remaining components (with low frequencies relative to €2;) we can move
to the coarse grid {22, where these components (in part) would be of high frequencies, and thus
they can be suppressed in a similar way. Therefore, we cover the domain [0, 1] by a range of
nested grids, of increasing coarseness, say,

Qp C Qop C Qup, C -+ C Qojpy

At every Qy,,, the iterations (Jacobi, or Gauss-Seidel) remove the high frequencies relative to this
grid, and we move to {2g,. On the coarsest grid, where the number of variables is small, we can
afford to solve the equations with a direct method, by Cholesky, say.

A typical multigrid method can be summarized by the following routine MGV, which gives
an approximate solution to the linear system Au = b, starting from the initial guess u’. We

assume below that the size of the linear system is m = 1/h — 1 = 2¢ — 1 for some integer /.

MGV(A4,b,u’)
1. If size of A is small enough, use a direct method to solve Au = b and exit. Else:

2. Presmoothing: Perform a small number (typically < 5) of Jacobi or Gauss-Seidel iterations

on Au = b starting from u°.

3. Let r = b — Au be the residual, with u from the previous step.

4. Let Ih - R™2 ~! — R™ be an interpolation operator that interpolates vectors on the coarse

grid g, to vectors on the fine grid Q; and let R?* : R™ — RMAD)/2=1 he a yestriction
operator that restricts vectors on the fine grid (2, to vectors on the coarse grid Q.

5. Let A = R?"AIl, which is of size ~ m/2 x m/2.

6. Recurse: let 8 = MGV/(A, R?"r,0) (approximate solution to the residual equation Ad = r
on the coarse grid)

7. Letu=u+ 1[4
8. Postsmoothing: apply a few Jacobi or Gauss-Seidel iterations starting from v on Apu = b

9. Return u

Remark 4.17 If we follow the recursive procedure outlined above, then we see that the algorithm starts at
the finest grid, travels to the coarsest (where we apply a direct solver), and back to the finest:
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Qp
Qap,
Qqp

For this reason, the algorithm above describes what is known as a V-cycle, hence the name of the routine.

To make the algorithm above complete, one needs to define the interpolation and restriction
operators. A common choice for the interpolation operator is linear interpolation, i.e.,

(IéLh’U)Qi = v; and (IS;#))QZ;H = (’Ui + ’Ui+1)/2

fori € [0, 5 ). Assuming zero boundary conditions, this takes the following matrix form:

’ 2h
r1 .
2
1 1
2
1 1
Iélh::l/2
1 1
1

For the restriction operator R, we take the following averaging operator

1 . 1
(R}zlh'u)i = Z('Ugi,1 —+ 2’022' + ’Ugi+1) S (0, ﬁ)
which corresponds, up to scaling, to the transpose of the linear interpolation operator above;
namely R?" = (13;,)7.
In practice, one may need to apply the routine MGV multiple times to improve the accuracy,
each time starting from the previously obtained solution.

Matlab demo: Download the Matlab GUI for Multigrid Methods from https://www.damtp.
cam.ac.uk/user/hf323/M21-II-NA/demos/multigrid/multigrid.html and see the ef-
fect of multigrid (in comparison with Jacobi and Gauss-Seidel) for solving the Poisson equation
with a forcing term f that possesses multiple frequencies.
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