Mathematical Tripos Part II: Michaelmas Term 2023
 Numerical Analysis - Lecture 18

4.1 Steepest descent and conjugate gradient methods

For solving $A \boldsymbol{x}=\boldsymbol{b}$ with a symmetric positive definite matrix A, we consider iterative methods based on an optimization formulation. Consider the convex quadratic function

$$
\begin{equation*}
F(\boldsymbol{x}):=\frac{1}{2}\langle\boldsymbol{x}, A \boldsymbol{x}\rangle-\langle\boldsymbol{b}, \boldsymbol{x}\rangle \tag{4.5}
\end{equation*}
$$

where $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{T} \boldsymbol{v}$ is the Euclidean inner product. Note that the global minimizer of F is $\boldsymbol{x}^{*}=A^{-1} \boldsymbol{b}$. Indeed

$$
F\left(\boldsymbol{x}^{*}+\boldsymbol{h}\right)-F\left(\boldsymbol{x}^{*}\right)=\left\langle\boldsymbol{h}, A \boldsymbol{x}^{*}-\boldsymbol{b}\right\rangle+\frac{1}{2}\langle\boldsymbol{h}, A \boldsymbol{h}\rangle \geq 0
$$

for any \boldsymbol{h}. Observe that F can also be written as

$$
F(\boldsymbol{x})=\frac{1}{2}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\|_{A}^{2}+\mathrm{constant}
$$

where $\|\boldsymbol{y}\|_{A}:=\langle\boldsymbol{y}, A \boldsymbol{y}\rangle^{1 / 2}=\sqrt{\boldsymbol{y}^{T} A \boldsymbol{y}}$ is the A-norm of A. (The constant in the above formulation is a term that does not depend on \boldsymbol{x}, so it is irrelevant for the purpose of minimizing F, the constant is $\frac{1}{2} \boldsymbol{b}^{T} A^{-1} \boldsymbol{b}$.)

Gradient/Steepest descent The gradient descent method for minimizing F has iterates

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \nabla F\left(\boldsymbol{x}^{(k)}\right)
$$

where $\nabla F\left(\boldsymbol{x}^{(k)}\right)$ is the gradient of F at $\boldsymbol{x}^{(k)}$, and $\alpha_{k}>0$ is the step size. For our quadratic function, it is easy to verify that

$$
\nabla F\left(\boldsymbol{x}^{(k)}\right)=A \boldsymbol{x}^{(k)}-\boldsymbol{b}=-\boldsymbol{r}^{(k)}
$$

where $\boldsymbol{r}^{(k)}=\boldsymbol{b}-A \boldsymbol{x}^{(k)}$ is the residual. There are multiple ways to choose the step size α_{k} :

- Constant step-size $\alpha_{k}=\alpha$. In this case the iteration takes the form

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha\left(A \boldsymbol{x}^{(k)}-\boldsymbol{b}\right)=(I-\alpha A) \boldsymbol{x}^{(k)}+\alpha \boldsymbol{b}
$$

which is nothing but a Jacobi-like iteration with $D=\alpha^{-1} I$ (we say Jacobi-like because the diagonal of A is not necessarily equal to $\alpha^{-1} I$). We know from previous lectures that the method converges iff

$$
\rho(I-\alpha A)<1 \Longleftrightarrow\left|1-\alpha \lambda_{i}\right|<1 \forall \lambda_{i} \text { eigenvalues of } A \Longleftrightarrow 0<\alpha<2 / \rho(A)
$$

For example, assume the eigenvalues of A are all in $[l, L]$ where $0<l<L$. Then one can choose $\alpha=1 / L$, and in this case the convergence rate is given by $\rho\left(I-\frac{1}{L} A\right)=1-l / L$, i.e., the error $\left\|\boldsymbol{x}^{*}-\boldsymbol{x}^{(k)}\right\|$ decays like $(1-l / L)^{k}$. The quantity $L / l \geq 1$ is known as the condition number of A. We see that, as the condition number grows, the convergence rate becomes worse and worse.

- Exact line search. Another way to choose the step size α_{k} is using line search. Here α_{k} is chosen so that it achieves the smallest possible value of F along the search direction, i.e., $\alpha_{k}=\arg \min _{\alpha} F\left(\boldsymbol{x}^{(k)}+\right.$ $\alpha \boldsymbol{d}^{(k)}$) where $\boldsymbol{d}^{(k)}$ is the search direction, equal to the negative gradient. Because our function is quadratic, one can get a closed form expression for the optimal α.

Lemma 4.20 Let F be the function defined in (4.5). Let $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{r}=\boldsymbol{b}-A \boldsymbol{x}$ be the residual and let $\boldsymbol{d} \in \mathbb{R}^{n}$ be a search direction. Then

$$
\begin{equation*}
\arg \min _{\alpha} F(\boldsymbol{x}+\alpha \boldsymbol{d})=\frac{\langle\boldsymbol{r}, \boldsymbol{d}\rangle}{\langle\boldsymbol{d}, A \boldsymbol{d}\rangle} . \tag{4.6}
\end{equation*}
$$

Proof. The function $F(\boldsymbol{x}+\alpha \boldsymbol{d})=F(\boldsymbol{x})-\alpha\langle\boldsymbol{r}, \boldsymbol{d}\rangle+\alpha^{2} / 2\langle\boldsymbol{d}, A \boldsymbol{d}\rangle$ is quadratic in the single variable α. The minimum is attained at α s.t. $-\langle\boldsymbol{r}, \boldsymbol{d}\rangle+\alpha\langle\boldsymbol{d}, A \boldsymbol{d}\rangle=0$ which gives the desired formula.
The gradient descent method with exact line search thus takes the form

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\frac{\left\|\boldsymbol{r}^{(k)}\right\|_{2}^{2}}{\left\|\boldsymbol{r}^{(k)}\right\|_{A}^{2}} \boldsymbol{r}^{(k)},
$$

where we used the fact that the gradient direction is $\boldsymbol{d}=-\nabla F\left(\boldsymbol{x}^{(k)}\right)=\boldsymbol{r}^{(k)}$. It can be shown that the speed of convergence of the gradient descent with exact line search is, like with the constant step size, $\approx(1-l / L)^{k}$ where $0<l<L$ are the smallest and largest eigenvalues of A. The figure below (left) shows an example of the gradient descent method with exact line search applied to a two-dimensional quadratic function F. Note the zig-zag behaviour of the iterates.

Conjugate directions Let's revisit equation (4.6) for a general direction \boldsymbol{d} (i.e., not necessarily equal to the negative gradient). Assume $\boldsymbol{x}=\boldsymbol{x}^{(k)}$, and let $\boldsymbol{e}^{(k)}=\boldsymbol{x}^{*}-\boldsymbol{x}^{(k)}$ be the error and $\boldsymbol{r}^{(k)}=\boldsymbol{b}-A \boldsymbol{x}^{(k)}=A \boldsymbol{e}^{(k)}$ be the residual. Then we can write $\left\langle\boldsymbol{r}^{(k)}, \boldsymbol{d}\right\rangle=\left\langle\boldsymbol{e}^{(k)}, \boldsymbol{d}\right\rangle_{A}$, and so for a general search direction \boldsymbol{d} with an exact line search, the iterate takes the form $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\frac{\left\langle\boldsymbol{e}^{(k)}, \boldsymbol{d}\right\rangle_{A}}{\langle\boldsymbol{d}, \boldsymbol{d}\rangle_{A}} \boldsymbol{d}$. By substracting \boldsymbol{x}^{*}, the iterates in terms of the error $\boldsymbol{e}^{(k+1)}$ are given by:

$$
\begin{equation*}
\boldsymbol{e}^{(k+1)}=\boldsymbol{e}^{(k)}-\frac{\left\langle\boldsymbol{e}^{(k)}, \boldsymbol{d}\right\rangle_{A}}{\langle\boldsymbol{d}, \boldsymbol{d}\rangle_{A}} \boldsymbol{d} \tag{4.7}
\end{equation*}
$$

Geometrically, this means that $e^{(k+1)}$ is the projection of $e^{(k)}$ onto the hyperplane that is A-orthogonal to d, i.e., we have

$$
\begin{equation*}
\left\langle e^{(k+1)}, \boldsymbol{d}\right\rangle_{A}=0 \tag{4.8}
\end{equation*}
$$

Definition 4.21 (Conjugate directions) The vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$ are conjugate with respect to a symmetric positive definite matrix A if they are nonzero and A-orthogonal: $\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{A}:=\langle\boldsymbol{u}, A \boldsymbol{v}\rangle=0$.

The observation above allows us to prove the following important result.
Theorem 4.22 Let $\boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \ldots, \boldsymbol{d}^{(n-1)}$ be n nonzero pairwise conjugate directions, and consider the sequence of iterates

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}, \quad \alpha_{k}=\frac{\left\langle\boldsymbol{r}^{(k)}, \boldsymbol{d}^{(k)}\right\rangle}{\left\langle\boldsymbol{d}^{(k)}, A \boldsymbol{d}^{(k)}\right\rangle} .
$$

Let $\boldsymbol{r}^{(k)}=\boldsymbol{b}-A \boldsymbol{x}^{(k)}$ be the residual. Then for each $k=1, \ldots, n, \boldsymbol{r}^{(k)}$ is orthogonal to $\operatorname{span}\left\{\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k-1)}\right\}$. In particular $\boldsymbol{r}^{(n)}=0$.

Proof. Since $\boldsymbol{r}^{(k)}=A \boldsymbol{e}^{(k)}$, it suffices to show that $\boldsymbol{e}^{(k)}$ is A-orthogonal to $\operatorname{span}\left\{\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k-1)}\right\}$. The proof is by induction on k. For $k=0$ there is nothing to prove. Assume the statement is true for $k \geq 0$, and consider the equation (4.7) (with $\boldsymbol{d}=\boldsymbol{d}^{(k)}$). From the induction hypothesis, and the fact that the $\boldsymbol{d}^{(i)}$ are pairwise conjugate directions, we see that $\boldsymbol{e}^{(k+1)}$ is A-orthogonal to $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k-1)}$. Furthermore, we have already seen in (4.8) that $\left\langle\boldsymbol{e}^{(k+1)}, \boldsymbol{d}^{(k)}\right\rangle_{A}=0$. Thus this shows that $\boldsymbol{e}^{(k+1)}$ is A-orthogonal to $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k)}$ as desired.

So, if a sequence ($\boldsymbol{d}^{(k)}$) of conjugate directions is at hands, we have an iterative procedure with good approximation properties. In the conjugate gradient method, the (A-orthogonal) basis of conjugate directions is constructed by A-orthogonalization of the sequence of gradients of F at the $\boldsymbol{x}^{(k)}$; or equivalently the sequence of residuals $\left\{\boldsymbol{r}^{(0)}, \ldots, \boldsymbol{r}^{(k)}\right\}$.

