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Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis — Lecture 18

4.1 Steepest descent and conjugate gradient methods

For solving Az = b with a symmetric positive definite matrix A, we consider iterative methods based on
an optimization formulation. Consider the convex quadratic function

F(z) = 3(x, Az) — (b,x) (4.5)

T

where (u,v) = u'v is the Euclidean inner product. Note that the global minimizer of F is z* = A~'b.

Indeed
F(z* +h) — F(z*) = (h, Az" — b) + 2 (h, Ah) > 0

for any h. Observe that F' can also be written as
F(z) = 3|lz* — x| + constant

where |y||4 := (y, Ay)'/? = \/yT Ay is the A-norm of A. (The constant in the above formulation is a term
that does not depend on =, so it is irrelevant for the purpose of minimizing F, the constant is %bTAflb.)

Gradient/Steepest descent The gradient descent method for minimizing F has iterates
ekt = 2 _ o, VF(x®)

where VF(z(®)) is the gradient of I at z*), and aj, > 0 is the step size. For our quadratic function, it is
easy to verify that
VFE(@®) = Az® —p = —¢®

where %) = b — Az(*) is the residual. There are multiple ways to choose the step size
* Constant step-size oy, = .. In this case the iteration takes the form
2D = 2 _ o(4z® —b) = (I — ad)z® + ab

which is nothing but a Jacobi-like iteration with D = a~'I (we say Jacobi-like because the diagonal
of A is not necessarily equal to a~1T). We know from previous lectures that the method converges iff

p(I —ad) <1 <= |1 —a)| <1 V) eigenvaluesof A < 0 < a < 2/p(A).

For example, assume the eigenvalues of A are all in [I, L] where 0 < | < L. Then one can choose
a = 1/L, and in this case the convergence rate is given by p(I — %A) = 1-1/L, ie., the error

|z* — 2| decays like (1 — I/L)*. The quantity L/l > 1 is known as the condition number of A. We
see that, as the condition number grows, the convergence rate becomes worse and worse.

o Exact line search. Another way to choose the step size ¢y, is using line search. Here oy, is chosen so that
it achieves the smallest possible value of F' along the search direction, i.e., & = argmin, F(z® +
ad™®) where d is the search direction, equal to the negative gradient. Because our function is
quadratic, one can get a closed form expression for the optimal a.

Lemma 4.20 Let F be the function defined in (4.5). Let x € R™, r = b — Ax be the residual and let d € R™

be a search direction. Then
(r,d)

(d, Ad)’

argmin F(z 4+ ad) = (4.6)
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Proof. The function F(z + ad) = F(x) — a(r,d) + o*/2(d, Ad) is quadratic in the single variable .
The minimum is attained at a s.t. —(r, d) + a(d, Ad) = 0 which gives the desired formula. O

The gradient descent method with exact line search thus takes the form

\\T(k)||§ (k)

(k+1) — (k)
x =z + ™,
"%

where we used the fact that the gradient direction is d = —VF(x*)) = r(*)_ It can be shown that the
speed of convergence of the gradient descent with exact line search is, like with the constant step size,
~ (1 —1/L)* where 0 < | < L are the smallest and largest eigenvalues of A. The figure below (left)
shows an example of the gradient descent method with exact line search applied to a two-dimensional
quadratic function F. Note the zig-zag behaviour of the iterates.
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(a) Worst case scenario of steepest descent (b) Conjugate gradient method applied to the same
problem as in (a)

Conjugate directions Let’s revisit equation (4.6) for a general direction d (i.e., not necessarily equal to the
negative gradient). Assume z = z(¥), and let e*) = z* — z(¥) be the error and r*) = b — Az*) = Ae(*) be
the residual. Then we can write (r(*), d) = (e(*), d) 4, and so for a general search direction d with an exact

line search, the iterate takes the form z(*+1) = z(*) 4 %d. By substracting z*, the iterates in terms of
5 A
the error e(**1) are given by:
(k) d)
(k+1) _ (k) (e, d)a
e =e' — —————d. 47
(d.d) @)

Geometrically, this means that e(**1) is the projection of e(*) onto the hyperplane that is A-orthogonal to d,
i.e., we have
(e* ) d)4 =0 (4.8)

Definition 4.21 (Conjugate directions) The vectors u,v € R"™ are conjugate with respect to a symmetric
positive definite matrix A if they are nonzero and A-orthogonal: (u,v) 4 := (u, Av) = 0.

The observation above allows us to prove the following important result.

Theorem 4.22 Let d,d™Y), ... d™~" be n nonzero pairwise conjugate directions, and consider the sequence of

iterates
(rt), )

<d(k)7 Ad(k)>'

Let 7®) = b — Az be the residual. Then for each k = 1,...,n, r®) is orthogonal to span{d?, ..., d*~V}. In
particular r(") = 0.

2D Z g®) 40 g® g, =
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Proof. Since r(*) = Ae(®), it suffices to show that e*) is A-orthogonal to span{d”, ... d*~}. The proof
is by induction on k. For k = 0 there is nothing to prove. Assume the statement is true for £ > 0, and
consider the equation (4.7) (with d = d(k)). From the induction hypothesis, and the fact that the d" are

pairwise conjugate directions, we see that e(*+1) is A-orthogonal to d?, ... d*=Y. Furthermore, we have
already seen in (4.8) that (ek+1)] d(k)>A = 0. Thus this shows that e*+1) is A-orthogonal to d(o), cee d® as
desired. 0

So, if a sequence (d™)) of conjugate directions is at hands, we have an iterative procedure with good
approximation properties. In the conjugate gradient method, the (A-orthogonal) basis of conjugate direc-
tions is constructed by A-orthogonalization of the sequence of gradients of F' at the z(*); or equivalently
the sequence of residuals {r(®, ... r(*)}.
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