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Numerical Analysis – Lecture 19

Conjugate gradient method The conjugate gradient method is the method of conjugate directions (The-
orem 4.22 from previous lecture) where the directions d(i) are chosen so that they A-orthogonalize the
residuals, i.e., the d(i) satisfy

span(d(0), . . . ,d(k−1)) = span(r(0), . . . , r(k−1)) (4.8)

for every iteration k, in addition to being pairwise A-orthogonal. This can be achieved by applying the
Gram-Schmidt procedure to the residuals {r(i)}. The conjugate gradient method can thus be expressed
using the following iterates. Starting from x(0) ∈ Rn, and letting r(0) = b−Ax(0), iterate, for k ≥ 0:

d(k) = r(k) −
∑
i<k

〈r(k),d(i)〉A
〈d(i),d(i)〉A

d(i)

x(k+1) = x(k) +
〈r(k),d(k)〉
〈d(k), Ad(k)〉

d(k).

(4.9)

As written, the iterates above are not attractive from a computational point of view, because they require
computing at least k − 1 inner products at each step k. However it turns out that the equation above
defining d(k) can be simplified dramatically and the terms i < k − 1 in the summation above happen to
be zero! This is one of the key points of the CG method. To prove this, we first introduce the following
important definition.

Definition 4.26 Let v ∈ Rn. The m’th Krylov subspace of A with respect to v is

Km(A,v) = span{Aiv}m−1
i=0 .

The following theorem collects important observations about the iterates (4.9).

Theorem 4.27 (Properties of CGM) For every m ≥ 0 such that r(m) 6= 0, the conjugate gradient method has the
following properties.

(1) The linear space spanned by the residuals {r(i)}mi=0 is the same as the linear space spanned by the conjugate
directions {d(i)}mi=0 and it coincides with the Krylov subspace Km+1(A, r

(0)):

{r(i)}mi=0 = {d(i)}mi=0 = Km+1(A, r
(0)) .

(2) The residuals satisfy the orthogonality conditions: 〈r(m), r(i)〉 = 〈r(m),d(i)〉 = 0 for i < m .

(3) The directions are conjugate (A-orthogonal): 〈d(m),d(i)〉A = 〈d(m), Ad(i)〉 = 0 for i < m .

Proof. (1) For notational convenience, we let Km = Km(A, r(0)).
By the properties of the Gram-Schmidt procedure we know span{d(i)}mi=0 = span{r(i)}mi=0. Furthermore,
from Theorem 4.22 of the previous lecture, we know that {r(0), . . . , r(m)} is an orthogonal basis of this
subspace. To show that this subspace is the Krylov subspace Km+1, we proceed by induction. The case
m = 0 is trivial. For m ≥ 1, note that since the iterates x(k) satisfy x(m+1) = x(m) + αmd(m), we get
r(m+1) = r(m) − αmAd(m). By the induction hypothesis, r(m),d(m) ∈ Km+1, and so Ad(m) ∈ Km+2. Thus
r(m+1) ∈ Km+2 as desired. This shows the inclusion span{r(i)}m+1

i=0 ⊆ Km+2; and one can show that we
have equality by dimension counting. Indeed since r(m+1) 6= 0 (by assumption), we know that r(m+1) is
orthogonal to r(i) for i ≤ m, and so we have

dim span{r(i)}m+1
i=0 = 1 + dim span{r(i)}mi=0 = 1 + dimKm+1(A, r

(0)) ≥ dimKm+2.
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Combining this with span{r(i)}m+1
i=0 ⊆ Km+2 we get equality of the subspaces.

(2) From Theorem 4.22 of the previous lectures, we know that 〈r(m),d(i)〉 = 0 for all i ≤ m − 1 which is
exactly what we want.
(3) This is by definition, since the d(i) are obtained by A-orthogonalizing the residual vectors. �

The properties above allow us to show that 〈r(k),d(i)〉A = 0 for i ≤ k − 2. Indeed, if we take i ≤ k − 2,
then d(i) ∈ Kk−1(A, r

(0)), which implies Ad(i) ∈ Kk(A, r
(0)) and so 〈r(k),d(i)〉A = 〈r(k), Ad(i)〉 = 0.

As a result, the algorithm (4.9) simplifies and reduces to the following: Set d(0) = r(0) = b − Ax(0) and
iterate, for k ≥ 0: 

x(k+1) = x(k) + αkd
(k) αk =

〈r(k),d(k)〉
〈d(k), Ad(k)〉

d(k+1) = r(k+1) + βkd
(k) βk = −〈r

(k+1), Ad(k)〉
〈d(k), Ad(k)〉

(4.10)

where r(k) stands for b−Ax(k).
We can further simplify the expressions for αk and βk using the properties stated in Theorem 4.27.

Indeed, using the second equation in (4.10), and the fact that r(k) ⊥ d(k−1), we have

〈r(k),d(k)〉 = 〈r(k), r(k)〉 = ‖r(k)‖22 (4.11)

which shows that

αk =
‖r(k)‖22

〈d(k), Ad(k)〉
> 0.

Also, we can write:

βk = −〈r
(k+1), Ad(k)〉
〈d(k), Ad(k)〉

(a)
= −〈r

(k+1), r(k+1) − r(k)〉
〈d(k), r(k+1) − r(k)〉

(b)
=
‖r(k+1)‖2

〈d(k), r(k)〉
(c)
=
‖r(k+1)‖2

‖r(k)‖2
> 0 .

where we used in (a) the fact that Ad(k) is a multiple of r(k+1) − r(k), and in (b) orthogonality of r(k+1) to
both r(k),d(k) (Theorem 4.27(2)), and in (c) we used (4.11).

The complete conjugate gradient method can thus be written as follows:

Algorithm 4.28 (Standard form of the conjugate gradient method) –

(1) Set k = 0, x(0) = 0, r(0) = b, and d(0) = r(0);
(2) Calculate the matrix-vector product v(k) = Ad(k) and αk = ‖r(k)‖2/〈d(k),v(k)〉 > 0;

(3) Apply the formulae x(k+1) = x(k) + αkd
(k) and r(k+1) = r(k) − αkv(k);

(4) Stop if ‖r(k+1)‖ is acceptably small;

(5) Set d(k+1) = r(k+1) + βkd
(k), where βk = ‖r(k+1)‖2/‖r(k)‖2 > 0;

(6) Increase k → k + 1 and go back to (2).

The total work is dominated by the number of iterations, multiplied by the time it takes to compute
v(k) = Ad(k). Thus the conjugate gradient algorithm is highly suitable when most of the elements of A are
zero, i.e. when A is sparse.

Finite termination We have already seen that the method of conjugate directions (Theorem 4.22 in pre-
vious lecture) terminates after at most n steps. We restate this result in the special case of the conjugate
gradient method.

Corollary 4.29 (A termination property) If the conjugate gradient method is applied in exact arithmetic, then, for
any x(0) ∈ Rn, termination occurs after at most n iterations. More precisely, termination occurs after at most s
iterations, where s = dim span{Air0}n−1

i=0 (which can be smaller than n).
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Proof. Assertion (2) of Theorem 4.27 states that residuals (r(k))k≥0 form a sequence of mutually orthog-
onal vectors in Rn, therefore at most n of them can be nonzero. Since they also belong to the space
span{Air0}n−1

i=0 , their number is bounded by the dimension of that space. �
We can bound the dimension of the Krylov subspace span{Air0}n−1

i=0 using the number of distinct eigen-
values of A.

Theorem 4.30 (Number of iterations in CGM) Let s be the number of distinct eigenvalues of A. Then, for any
v,

dimKm(A,v) ≤ s ∀m. (4.12)

Hence the number of iterations of CGM for solving Ax = b is bounded by the number of distinct eigenvalues of A.

Proof. Inequality (4.12) is true for any diagonalizable matrixA. Indeed if (ui) are the n linearly independent
eigenvectors of A, one can expand v =

∑n
i=1 aiui, and then group together eigenvectors with the same

eigenvalues: for each λν we set wν =
∑mν
k=1 aikuik if Auik = λνuik . Then

v =
∑s
ν=1 cνwν , cν ∈ {0, 1} ,

hence Aiv =
∑s
ν=1 cνλ

i
νwν , thus for any m we get Km(A,v) ⊆ span{w1,w2, . . . ,ws}, and that proves

(4.12). By Corollary 4.29, the number of iteration in CGM is bounded by dimKm(A, r(0)), hence the final
conclusion. �

Remark 4.31 Theorem 4.30 shows that, unlike other iterative schemes, the conjugate gradient method is
both iterative and direct: each iteration produces a reasonable approximation to the exact solution, and the
exact solution itself will be recovered after n iterations at most.
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