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Numerical Analysis – Lecture 20

Convergence of CG The following theorem gives an important characterization of the CG method.

Theorem 4.33 Let A be symmetric positive definite. After k iterations of the conjugate gradient method, the error
e(k) = x∗ − x(k) satisfies

‖e(k)‖A = min
Pk

‖Pk(A)e(0)‖A

where the minimization is over all polynomials Pk of degree ≤ k that satisfy Pk(0) = 1.

Proof. We know from Lecture 18, Theorem 4.22 that e(k) isA-orthogonal to span{d(0), . . . ,d(k−1)}. It is also
easy to see that e(k) − e(0) is in span{d(0), . . . ,d(k−1)} (see e.g., Equation (4.7) in Lecture 18, with d = d(k)).
Thus if we write

e(0) = (e(0) − e(k)) + e(k) (4.11)

we see that e(0) − e(k) is the A-orthogonal projection of e(0) on the subspace span{d(0), . . . ,d(k−1)}, and so

‖e(k)‖A = min
v
‖e(0) − v‖A

where the minimization is over all v ∈ span(d(0), . . . ,d(k−1)), see figure below.
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Figure 1: Geometric representation of (4.11). Orthogonality here is with respect to the A-inner product.

Since span(d(0), . . . ,d(k−1)) = span(r(0), . . . , Ak−1r(0)), and since r(0) = Ae(0), this means that any such
v can be written as v =

∑k
i=1 ciA

ie(0), i.e., e(0) − v = Pk(A)e
(0) with Pk(t) = 1 −

∑k
i=1 cit

i is a degree k
polynomial with Pk(0) = 1. �

Remark 4.34 IfA has s distinct eigenvalues λ1, . . . , λs > 0, then with Ps(t) =
∏s
i=1(1−t/λi) we have degPs = s,

Ps(0) = 1, and Ps(A) = 0. Thus this shows that the CG method terminates after s iterations, recovering the result
of Corollary 4.29.

Corollary 4.35 LetA be symmetric positive definite, and assume that all its eigenvalues lie in [l, L] where 0 < l < L.
Then after k iterations of the conjugate gradient method, the error e(k) = x∗ − x(k) satisfies

‖e(k)‖A ≤ 2ρk‖e(0)‖A ≤ 2(1−
√
l/L)k‖e(0)‖A, ρ =

√
L−
√
l√

L+
√
l
< 1.

Proof. First note that for any polynomial Pk we have

‖Pk(A)e(0)‖A ≤
(

max
λ∈spec(A)

|Pk(λ)|
)
‖e(0)‖A

where spec(A) is the set of eigenvalues of A (its spectrum). To see why, let w1, . . . ,wn be an orthogonal
basis of eigenvectors of A such that e(0) =

∑
iwi. Since the wi are eigenvectors of A, they are also pairwise
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orthogonal with respect to the A-inner product, and so ‖e(0)‖2A =
∑
i ‖wi‖2A. In addition Pk(A)e

(0) =∑
i Pk(λi)wi and so

‖Pk(A)e(0)‖2A = ‖
∑
i

Pk(λi)wi‖2A =
∑
i

|Pk(λi)|2‖wi‖2A

≤
(

max
λ∈spec(A)

|Pk(λ)|2
)
‖e(0)‖2A

as desired.
We know that the eigenvalues ofA are all in [l, L], so we consider the problem of finding the polynomial

Pk of degree k, such that Pk(0) = 1, and that minimizes the value

max
x∈[l,L]

|Pk(x)|.

We take Pk to be a Chebyshev polynomial which is suitably translated and scaled, i.e.,

Pk(x) = Tk

(
2
L− x
L− l

− 1

)/
Tk

(
L+ l

L− l

)
where Tk is the usual Chebyshev polynomial defined by identity Tk(cos θ) = cos(kθ). The polynomial Pk
satisfies Pk(0) = 1, and since |Tk(t)| ≤ 1 for all t ∈ [−1, 1], we have

|Pk(x)| ≤
∣∣∣∣Tk (L+ l

L− l

)∣∣∣∣−1 ,
for all x ∈ [l, L]. The Chebyshev polynomial satisfies the following inequality for all |t| ≥ 1:

Tk(t) ≥
1

2

(
t+
√
t2 − 1

)k
.

By taking t = (L+ l)/(L− l), we see that t+
√
t2 − 1 =

√
L+
√
l√

L−
√
l
, which gives us the desired bound

∀x ∈ [l, L], |Pk(x)| ≤ 2

(√
L−
√
l√

L+
√
l

)k
.

�
For a symmetric positive definite matrix A, let κ(A) = λmax(A)

λmin(A) > 1 be its condition number. We saw that

the convergence rate of the steepest descent method is ≈ (1− 1
κ(A)

)k, whereas the CG method achieves the

better rate of
(
1− 1√

κ(A)

)k
. When κ(A)� 1, note that 1− 1/

√
κ(A)� 1− 1/κ(A).

Remark 4.36 The condition number defined above can be written as κ(A) = ‖A‖2‖A−1‖2 where ‖ · ‖2 is the
operator norm of A. This quantity measures the sensitivity of the matrix inverse operation, in a relative error sense.
Let φ(A) = A−1 be the matrix inverse operation, and consider a perturbation Ã = A+H . The relative sensitivity is
defined as:

‖φ(Ã)− φ(A)‖2/‖φ(A)‖2
‖Ã−A‖2/‖A‖2

=
output relative error
input relative error

.

One can show that for H small, this quantity is bounded above by κ(A).

Preconditioning Preconditioning is a technique by which we modify the linear system Ax = b in order
to reduce the condition number and obtain faster convergence. The idea is to change variables, x = PT x̂,
where P is a nonsingular n × n matrix, and multiply both sides with P . Thus, instead of Ax = b, we are
solving the linear system

PAPT x̂ = Pb ⇔ Âx̂ = b̂ . (4.12)
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Note that symmetry and positive definiteness of A imply that Â = PAPT is also symmetric and positive
definite since 〈Ây,y〉 = 〈PAPTy,y〉 = 〈APTy, PTy〉 > 0. Therefore, we can apply conjugate gradients to
the new system. This results in the solution x̂, hence x = PT x̂. This procedure is called the preconditioned
conjugate gradient method and the matrix P is called the preconditioner.

The main idea of preconditioning is to pick P in (4.12) so that κ(Â) is much smaller than κ(A), thus
accelerating convergence. Ideally, one would like to choose P so that PAPT = I , however this amounts
to inverting A! Instead, we look for an approximation S of A that is easy to invert, or to factorize. If we
let S = LLT be a Cholesky factorization of this approximation of A, and take P = L−1, then PAPT =
L−1AL−T ≈ I . Possible choices of S include:

1. The simplest choice of S is D = diagA, then P = D−1/2.

2. Another possibility is to choose S as a band matrix with small bandwidth. For example, solving the
Poisson equation with the five-point formula, we may take S to be the tridiagonal part of A.

Example 4.37 Consider the tridiagonal system Ax = b, and let S be defined by:

A =


2 −1
−1 2

. . .
. . . . . . −1
−1 2

 , S =


1 −1
−1 2

. . .
. . . . . . −1
−1 2

 = LLT , with L =


1

−1 1
. . . . . .
−1 1

 .
The matrix S coincides with A except at the (1, 1)-entry and happens to have a simple Cholesky factor-
ization S = LLT . Using P = L−1, we note that PAPT has only two distinct eigenvalues, and so the CG
method converges in two iterations. Indeed, PAPT = P (S + e1e

T
1 )P

T = I +wwT where w = L−1e1 is a
rank-1 perturbation of the identity matrix, with all eigenvalues but one equal to 1 (the other one is equal to
1 + ‖w‖22).
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