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Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis — Lecture 20

Convergence of CG The following theorem gives an important characterization of the CG method.

Theorem 4.33 Let A be symmetric positive definite. After k iterations of the conjugate gradient method, the error
e®) = x* — () satisfies
le™ 4 = min || Pe(A)e'”]||.
k

where the minimization is over all polynomials Py, of degree < k that satisfy Py (0) = 1.

Proof. We know from Lecture 18, Theorem 4.22 that e(*) is A-orthogonal to span{d(o), ,d*Y }+. Itis also
easy to see that e(®) — () is in span{d(o), ., d* DY (see e.g., Equation (4.7) in Lecture 18, with d = d™)y.
Thus if we write

e = (e — ) 4 e® (4.11)

we see that e(®) — e(%) is the A-orthogonal projection of e(®) on the subspace span{d”), ... d* Y}, and so

le®]l.4 = min e — v].4

where the minimization is over all v € span(d?, ..., d*~Y), see figure below.
¢
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Figure 1: Geometric representation of (4.11). Orthogonality here is with respect to the A-inner product.

Since span(d?, ..., d* V) = span(r©®, ..., A¥~17(0), and since 7(?) = Ae(®), this means that any such
v can be written as v = Zle ciAe),ie., e — v = P, (A)e® with P.(t) = 1 — Zle c;t' is a degree k
polynomial with P;(0) = 1. O

Remark 4.34 If A has s distinct eigenvalues Ay, ..., \s > 0, then with Ps(t) = [];_,(1—t/)\;) we have deg Ps = s,
P;(0) = 1, and P,(A) = 0. Thus this shows that the CG method terminates after s iterations, recovering the result
of Corollary 4.29.

Corollary 4.35 Let A be symmetric positive definite, and assume that all its eigenvalues lie in [l, L] where 0 < I < L.
Then after k iterations of the conjugate gradient method, the error e*) = x* — x(¥) satisfies

(k) k| (0) _ k1, (0) _ VL=Vl
le®la < 20*]e@a < 200 = VI/D*|e]a, o= F7 <L

Proof. First note that for any polynomial P, we have

|1P(A)e@]|4 < ( max |Pk()\)|) 1e]|.4
A€spec(A)

where spec(A) is the set of eigenvalues of A (its spectrum). To see why, let w1, ..., w, be an orthogonal
basis of eigenvectors of A such that e(®) = 3" w;. Since the w; are eigenvectors of A, they are also pairwise
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orthogonal with respect to the A-inner product, and so [e®]% = 3, |lw;|%. In addition P(A)e® =
> Pe(Xi)w; and so

A = 1 5 Pl = 3 1Pl
< PV ) (€@
_Qggmk<>)wnA

as desired.
We know that the eigenvalues of A are all in [/, L], so we consider the problem of finding the polynomial
Py, of degree k, such that P;(0) = 1, and that minimizes the value

P,
arg[%]l % ()]

We take P, to be a Chebyshev polynomial which is suitably translated and scaled, i.e.,

O )

where T}, is the usual Chebyshev polynomial defined by identity T} (cos ) = cos(kf). The polynomial P;
satisfies P;(0) = 1, and since |T;(t)| < 1 forall t € [—1, 1], we have

L+1\|"
(1)
for all z € [I, L]. The Chebyshev polynomial satisfies the following inequality for all |¢| > 1:

Te(t) > % (t +VE - 1)k

By taking ¢t = (L +1)/(L — ), we see that t + v/t2 = f*‘[, which gives us the desired bound

[P ()] <

)

Vo € (LI, |Pule)] < <j+j>

]
For a symmetric positive definite matrix A, let k(A) = A‘“L((A)) > 1 be its condition number. We saw that

the convergence rate of the steepest descent method is ~ (1 — ﬁ) , whereas the CG method achieves the

k
better rate of (1 - ) . When k(A4) > 1,note that 1 —1//k(4) < 1 —1/k(A).

w(A)
Remark 4.36 The condition number defined above can be written as k(A) = HAH2||A‘1||2 where || - ||2 is the
operator norm of A. This quantlty measures the sensitivity of the matrix inverse operation, in a relative error sense.
Let ¢(A) = A~! be the matrix inverse operation, and consider a perturbation A = A + H. The relative sensitivity is
defined as:

||qb(121) — ¢(A)ll2/lp(A)ll2 _ output relative error

|A — All2/||All2 input relative error

One can show that for H small, this quantity is bounded above by k(A).

Preconditioning Preconditioning is a technique by which we modify the linear system Ax = b in order
to reduce the condition number and obtain faster convergence. The idea is to change variables, z = P7z,
where P is a nonsingular n x n matrix, and multiply both sides with P. Thus, instead of Ax = b, we are
solving the linear system

PAPTZ =Pb <« Ai=b. (4.12)
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Note that symmetry and positive definiteness of A imply that A = PAPT is also symmetric and positive
definite since (Ay, y) = (PAPTy,y) = (APTy, PTy) > 0. Therefore, we can apply conjugate gradients to
the new system. This results in the solution z, hence z = PTz. This procedure is called the preconditioned
conjugate gradient method and the matrix P is called the preconditioner.

The main idea of preconditioning is to pick P in (4.12) so that x(A) is much smaller than x(A), thus
accelerating convergence. Ideally, one would like to choose P so that PAPT = I, however this amounts
to inverting A! Instead, we look for an approximation S of A that is easy to invert, or to factorize. If we
let S = LLT be a Cholesky factorization of this approximation of A, and take P = L~!, then PAPT =
L7YAL™T ~ I. Possible choices of S include:

1. The simplest choice of S is D = diag A4, then P = D~1/2,

2. Another possibility is to choose S as a band matrix with small bandwidth. For example, solving the
Poisson equation with the five-point formula, we may take S to be the tridiagonal part of A.

Example 4.37 Consider the tridiagonal system Ax = b, and let .S be defined by:
2-1 1-1 1
-1 2. -1 2.
IR | IR | .o
-1 2 -1 2 -1 1

A= , S= =LLT, with L=

The matrix S coincides with A except at the (1,1)-entry and happens to have a simple Cholesky factor-
ization S = LLT. Using P = L~!, we note that PAPT has only two distinct eigenvalues, and so the CG
method converges in two iterations. Indeed, PAPT = P(S + e1el)PT = I + ww” where w = L7e; isa
rank-1 perturbation of the identity matrix, with all eigenvalues but one equal to 1 (the other one is equal to
L+ w2,
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