Mathematical Tripos Part II: Michaelmas Term 2023
 Numerical Analysis - Lecture 20

Convergence of CG The following theorem gives an important characterization of the CG method.
Theorem 4.33 Let A be symmetric positive definite. After k iterations of the conjugate gradient method, the error $\boldsymbol{e}^{(k)}=\boldsymbol{x}^{*}-\boldsymbol{x}^{(k)}$ satisfies

$$
\left\|\boldsymbol{e}^{(k)}\right\|_{A}=\min _{P_{k}}\left\|P_{k}(A) \boldsymbol{e}^{(0)}\right\|_{A}
$$

where the minimization is over all polynomials P_{k} of degree $\leq k$ that satisfy $P_{k}(0)=1$.
Proof. We know from Lecture 18, Theorem 4.22 that $\boldsymbol{e}^{(k)}$ is A-orthogonal to span $\left\{\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k-1)}\right\}$. It is also easy to see that $\boldsymbol{e}^{(k)}-\boldsymbol{e}^{(0)}$ is in span $\left\{\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k-1)}\right\}$ (see e.g., Equation (4.7) in Lecture 18, with $\boldsymbol{d}=\boldsymbol{d}^{(k)}$). Thus if we write

$$
\begin{equation*}
\boldsymbol{e}^{(0)}=\left(\boldsymbol{e}^{(0)}-\boldsymbol{e}^{(k)}\right)+\boldsymbol{e}^{(k)} \tag{4.11}
\end{equation*}
$$

we see that $\boldsymbol{e}^{(0)}-\boldsymbol{e}^{(k)}$ is the A-orthogonal projection of $\boldsymbol{e}^{(0)}$ on the subspace span $\left\{\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k-1)}\right\}$, and so

$$
\left\|\boldsymbol{e}^{(k)}\right\|_{A}=\min _{\boldsymbol{v}}\left\|\boldsymbol{e}^{(0)}-\boldsymbol{v}\right\|_{A}
$$

where the minimization is over all $\boldsymbol{v} \in \operatorname{span}\left(\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k-1)}\right)$, see figure below.

Figure 1: Geometric representation of (4.11). Orthogonality here is with respect to the A-inner product.
Since $\operatorname{span}\left(\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k-1)}\right)=\operatorname{span}\left(\boldsymbol{r}^{(0)}, \ldots, A^{k-1} \boldsymbol{r}^{(0)}\right)$, and since $\boldsymbol{r}^{(0)}=A \boldsymbol{e}^{(0)}$, this means that any such \boldsymbol{v} can be written as $\boldsymbol{v}=\sum_{i=1}^{k} c_{i} A^{i} \boldsymbol{e}^{(0)}$, i.e., $\boldsymbol{e}^{(0)}-\boldsymbol{v}=P_{k}(A) \boldsymbol{e}^{(0)}$ with $P_{k}(t)=1-\sum_{i=1}^{k} c_{i} t^{i}$ is a degree k polynomial with $P_{k}(0)=1$.

Remark 4.34 If A has s distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{s}>0$, then with $P_{s}(t)=\prod_{i=1}^{s}\left(1-t / \lambda_{i}\right)$ we have $\operatorname{deg} P_{s}=s$, $P_{s}(0)=1$, and $P_{s}(A)=0$. Thus this shows that the CG method terminates after s iterations, recovering the result of Corollary 4.29.

Corollary 4.35 Let A be symmetric positive definite, and assume that all its eigenvalues lie in $[l, L]$ where $0<l<L$. Then after k iterations of the conjugate gradient method, the error $\boldsymbol{e}^{(k)}=\boldsymbol{x}^{*}-\boldsymbol{x}^{(k)}$ satisfies

$$
\left\|\boldsymbol{e}^{(k)}\right\|_{A} \leq 2 \rho^{k}\left\|\boldsymbol{e}^{(0)}\right\|_{A} \leq 2(1-\sqrt{l / L})^{k}\left\|\boldsymbol{e}^{(0)}\right\|_{A}, \quad \rho=\frac{\sqrt{L}-\sqrt{l}}{\sqrt{L}+\sqrt{l}}<1
$$

Proof. First note that for any polynomial P_{k} we have

$$
\left\|P_{k}(A) \boldsymbol{e}^{(0)}\right\|_{A} \leq\left(\max _{\lambda \in \operatorname{spec}(A)}\left|P_{k}(\lambda)\right|\right)\left\|\boldsymbol{e}^{(0)}\right\|_{A}
$$

where $\operatorname{spec}(A)$ is the set of eigenvalues of A (its spectrum). To see why, let $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}$ be an orthogonal basis of eigenvectors of A such that $\boldsymbol{e}^{(0)}=\sum_{i} \boldsymbol{w}_{i}$. Since the \boldsymbol{w}_{i} are eigenvectors of A, they are also pairwise
orthogonal with respect to the A-inner product, and so $\left\|\boldsymbol{e}^{(0)}\right\|_{A}^{2}=\sum_{i}\left\|\boldsymbol{w}_{i}\right\|_{A}^{2}$. In addition $P_{k}(A) \boldsymbol{e}^{(0)}=$ $\sum_{i} P_{k}\left(\lambda_{i}\right) \boldsymbol{w}_{i}$ and so

$$
\begin{aligned}
\left\|P_{k}(A) \boldsymbol{e}^{(0)}\right\|_{A}^{2} & =\left\|\sum_{i} P_{k}\left(\lambda_{i}\right) \boldsymbol{w}_{i}\right\|_{A}^{2}=\sum_{i}\left|P_{k}\left(\lambda_{i}\right)\right|^{2}\left\|\boldsymbol{w}_{i}\right\|_{A}^{2} \\
& \leq\left(\max _{\lambda \in \operatorname{spec}(A)}\left|P_{k}(\lambda)\right|^{2}\right)\left\|\boldsymbol{e}^{(0)}\right\|_{A}^{2}
\end{aligned}
$$

as desired.
We know that the eigenvalues of A are all in $[l, L]$, so we consider the problem of finding the polynomial P_{k} of degree k, such that $P_{k}(0)=1$, and that minimizes the value

$$
\max _{x \in[l, L]}\left|P_{k}(x)\right|
$$

We take P_{k} to be a Chebyshev polynomial which is suitably translated and scaled, i.e.,

$$
P_{k}(x)=T_{k}\left(2 \frac{L-x}{L-l}-1\right) / T_{k}\left(\frac{L+l}{L-l}\right)
$$

where T_{k} is the usual Chebyshev polynomial defined by identity $T_{k}(\cos \theta)=\cos (k \theta)$. The polynomial P_{k} satisfies $P_{k}(0)=1$, and since $\left|T_{k}(t)\right| \leq 1$ for all $t \in[-1,1]$, we have

$$
\left|P_{k}(x)\right| \leq\left|T_{k}\left(\frac{L+l}{L-l}\right)\right|^{-1}
$$

for all $x \in[l, L]$. The Chebyshev polynomial satisfies the following inequality for all $|t| \geq 1$:

$$
T_{k}(t) \geq \frac{1}{2}\left(t+\sqrt{t^{2}-1}\right)^{k}
$$

By taking $t=(L+l) /(L-l)$, we see that $t+\sqrt{t^{2}-1}=\frac{\sqrt{L}+\sqrt{l}}{\sqrt{L}-\sqrt{l}}$, which gives us the desired bound

$$
\forall x \in[l, L],\left|P_{k}(x)\right| \leq 2\left(\frac{\sqrt{L}-\sqrt{l}}{\sqrt{L}+\sqrt{l}}\right)^{k}
$$

For a symmetric positive definite matrix A, let $\kappa(A)=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}>1$ be its condition number. We saw that the convergence rate of the steepest descent method is $\approx\left(1-\frac{1}{\kappa(A)}\right)^{k}$, whereas the CG method achieves the better rate of $\left(1-\frac{1}{\sqrt{\kappa(A)}}\right)^{k}$. When $\kappa(A) \gg 1$, note that $1-1 / \sqrt{\kappa(A)} \ll 1-1 / \kappa(A)$.

Remark 4.36 The condition number defined above can be written as $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$ where $\|\cdot\|_{2}$ is the operator norm of A. This quantity measures the sensitivity of the matrix inverse operation, in a relative error sense. Let $\phi(A)=A^{-1}$ be the matrix inverse operation, and consider a perturbation $\tilde{A}=A+H$. The relative sensitivity is defined as:

$$
\frac{\|\phi(\tilde{A})-\phi(A)\|_{2} /\|\phi(A)\|_{2}}{\|\tilde{A}-A\|_{2} /\|A\|_{2}}=\frac{\text { output relative error }}{\text { input relative error }}
$$

One can show that for H small, this quantity is bounded above by $\kappa(A)$.

Preconditioning Preconditioning is a technique by which we modify the linear system $A \boldsymbol{x}=\boldsymbol{b}$ in order to reduce the condition number and obtain faster convergence. The idea is to change variables, $\boldsymbol{x}=P^{T} \widehat{\boldsymbol{x}}$, where P is a nonsingular $n \times n$ matrix, and multiply both sides with P. Thus, instead of $A \boldsymbol{x}=\boldsymbol{b}$, we are solving the linear system

$$
\begin{equation*}
P A P^{T} \widehat{\boldsymbol{x}}=P \boldsymbol{b} \Leftrightarrow \widehat{A} \widehat{x}=\widehat{\boldsymbol{b}} \tag{4.12}
\end{equation*}
$$

Note that symmetry and positive definiteness of A imply that $\widehat{A}=P A P^{T}$ is also symmetric and positive definite since $\langle\widehat{A} \boldsymbol{y}, \boldsymbol{y}\rangle=\left\langle P A P^{T} \boldsymbol{y}, \boldsymbol{y}\right\rangle=\left\langle A P^{T} \boldsymbol{y}, P^{T} \boldsymbol{y}\right\rangle>0$. Therefore, we can apply conjugate gradients to the new system. This results in the solution $\widehat{\boldsymbol{x}}$, hence $\boldsymbol{x}=P^{T} \widehat{\boldsymbol{x}}$. This procedure is called the preconditioned conjugate gradient method and the matrix P is called the preconditioner.

The main idea of preconditioning is to pick P in (4.12) so that $\kappa(\widehat{A})$ is much smaller than $\kappa(A)$, thus accelerating convergence. Ideally, one would like to choose P so that $P A P^{T}=I$, however this amounts to inverting A ! Instead, we look for an approximation S of A that is easy to invert, or to factorize. If we let $S=L L^{T}$ be a Cholesky factorization of this approximation of A, and take $P=L^{-1}$, then $P A P^{T}=$ $L^{-1} A L^{-T} \approx I$. Possible choices of S include:

1. The simplest choice of S is $D=\operatorname{diag} A$, then $P=D^{-1 / 2}$.
2. Another possibility is to choose S as a band matrix with small bandwidth. For example, solving the Poisson equation with the five-point formula, we may take S to be the tridiagonal part of A.

Example 4.37 Consider the tridiagonal system $A x=b$, and let S be defined by:

$$
A=\left[\begin{array}{rrll}
2 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right], \quad S=\left[\begin{array}{rrrr}
1 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]=L L^{T}, \quad \text { with } L=\left[\begin{array}{rlll}
1 & & & \\
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1
\end{array}\right] .
$$

The matrix S coincides with A except at the (1,1)-entry and happens to have a simple Cholesky factorization $S=L L^{T}$. Using $P=L^{-1}$, we note that $P A P^{T}$ has only two distinct eigenvalues, and so the CG method converges in two iterations. Indeed, $P A P^{T}=P\left(S+\boldsymbol{e}_{1} \boldsymbol{e}_{1}^{T}\right) P^{T}=I+\boldsymbol{w} \boldsymbol{w}^{T}$ where $\boldsymbol{w}=L^{-1} \boldsymbol{e}_{1}$ is a rank-1 perturbation of the identity matrix, with all eigenvalues but one equal to 1 (the other one is equal to $\left.1+\|\boldsymbol{w}\|_{2}^{2}\right)$.

